Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37384
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳榮杰(Rhung-Jieh Wu)
dc.contributor.authorJing-Yu Lien
dc.contributor.author李靜渝zh_TW
dc.date.accessioned2021-06-13T15:26:19Z-
dc.date.available2011-08-16
dc.date.copyright2011-08-16
dc.date.issued2011
dc.date.submitted2011-08-11
dc.identifier.citation1.方文碩、張倉耀,2002。「風險貼水與外匯市場效率性」,管理評論。第21卷,第2期,27-51。
2.史綱、李存修、林炯垚、臧大年、劉德明、黃敏助,1993。期貨交易理論與實務。台北:中華民國證券暨期貨市場發展基金會。
3.何文榮、曾見文,2007。「台灣50指數ETF價格發現之研究」,華人經濟研究。第5卷,第1期,87-107。
4.李俊杉,2003。「現貨、台指期貨與摩根台指期貨多變量GARCH-M模型價格發現過程探討」。碩士論文,逢甲大學經濟學系。
5.周雨田、李志宏、巫春洲,2002。「台灣期貨對現貨市場的資訊傳遞效果分析」,財務金融學刊。第10卷,第2期,1-22。
6.周雨田、巫春洲、劉炳麟,2004。「動態波動模型預測能力之比較與實證」,財務金融學刊。第12卷,1-25。
7.邱建良、吳佩珊、邱哲修,2004。「亞洲外匯市場行為之探討─不對稱門檻GARCH模型之應用」,台灣管理學刊。第4卷,第2期,187-202。
8.林楚雄,2005。「個股波動不對稱性之實證研究:以台灣股票市場為例」,中山管理評論。第13卷,第3期,811-836。
9.洪澄洋,1982。經濟統計實務。台北:五南圖書出版公司。
10.張阜民、李見發、陳郁菁、邱國欽,2009。「台灣股價指數現貨、摩根台股指數現貨與摩根台股指數期貨之價格發現研究」,朝陽學報。第14期,411-439。
11.黃也白,1994。「股價指數期貨上市對股價波動性的影響」。碩士論文,台灣大學財務金融學系。
12.楊奕農,2009。時間序列分析:經濟與財務上之應用。台北:雙葉書廊。
13.詹錦宏、施介人,2005。「台股指數現貨、期貨與選擇權價格發現之研究」,台灣金融財務季刊。第6輯,第1期,31-51。
14.廖四郎、徐守德、王銘杰,1997。「台灣遠期美元外匯市場風險溢酬之研究」,財務金融學刊。第5卷,第2期,27-43。
15.賴鈺城、張純明、廖敏齡、黃景琳,2008。「台指現貨、台指期貨與摩指台期貨價量關係之探討─GARCH模型之應用」,華人經濟研究。第6卷,第2期,18-34。
16.謝文良,2002。「價格發現、資訊傳遞、與市場整合─台股期貨市場之研究」,財務金融學刊。第10卷,第3期,1-31。
17.Antoniou, A. and P. Holmes, 1995. “Futures trading, Information and spot price volatility: evidence for the FTSE-100 Stock Index Futures contract using GARCH,” Journal of Banking and Finance. 19: 117-129.
18.Black, F., 1976. “Studies of Stock Price Volatility Changes,” Proceedings of the 1976 meetings of the American Statistical Association, Business and Economic Statistics Section.
19.Blair, B., S.H. Poon and S. J. Taylor, 2002. “Asymmetric and Crash Effects in Stock Volatility for the S&P 100 Index and Its Constituents,” Applied Financial Economics. 12: 319-329.
20.Bollerslev, T., 1986. “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics. 31(3): 307-327.
21.Bollerslev, T., R. Y. Chou, and K.F. Kroner, 1992. “ARCH modeling in finance: A review of the theory and empirical evidence,” Journal of Econometrics. 52: 5-59.
22.Booth, G. G., R. W. So, and Y. Tse, 1999. “Price Discovery in the German Equity Index Derivatives Markets,” Journal of Futures Markets. 19(6): 619-643.
23.Campbell, J. Y. and Ludger Hentschel, 1992. “No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns,” Journal of Financial Economics. 31: 281-318.
24.Chan, K., 1992. “A Further Analysis of the Lead-Lag Relationship between the Cash Market and Stock Index Futures Market,” Review of Financial Studies. 5(1): 123-152.
25.Christie, A. A., 1982. “The Stochastic Behavior of Common Stock Variances,” Journal of Financial Economics. 10: 407-432.
26.Chou, R. Y., 1988. “Volatility Persistence and Stock Valuations: Some Empirical Evidence Using GARCH,” Journal of Applied Econometrics. 3: 279-294.
27.Chow, G. C., 1960. “Test of Equality Between Sets of Coefficients in Two Linear Regression,” Econometrica. 28(3): 591-605.
28.Cox, C. C., 1976. “Futures Trading and Market Information,” Journal of Political Economy. 84(6): 1215-1237.
29.Dagum, E. B., 1988. X-11-ARIMA/88 Seasonal Adjustment Method – Foundations and Users Manual. Statistics Canada.
30.Domowitz, I. and C.S. Hakkio, 1985. “Conditional variance and the risk premium in the foreign exchange market,” Journal of International Economics. 19: 47-66.
31.Engle, R. F., 1982. “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation.” Econometrica. 50: 987-1007.
32.Engle, R. F., D. M. Lilien, and R. P. Robbins, 1987. “Estimating time varying risk premia in the term structure: The ARCH-M model,” Econometrica. 55: 391-408.
33.Fama, E., 1970. “Efficient Capital Markets: A Review of Theory and Empirical Work,” Journal of Finance. 25: 383-417.
34.Findley D. F., B. C. Monsell, W. R. Bell, M. C. Otto and B. C. Chen, 1998. “New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program,” Journal of Business & Economic Statistics. 16(2): 127-152.
35.Garbade, K. D. and W. L. Silber, 1983. “Price Movements and Price Discovery in Futures and Cash Markets,” Review of Economics and Statistics. 65: 289-297.
36.Hasbrouck, J., 1995. “One Security, Many Markets: Determining the Contributions to Price Discovery,” Journal of Finance. 50(4): 1175-1199.
37.Intercontinental Exchange, 2010. ICE Coffee Brochure. United States: Intercontinental Exchange.
38.Kim, M., A. C. Szkmary, and T. V. Schwarz, 1999. “Trading Costs and Price Discovery across Stock Index Futures, and Cash Markets,” Journal of Futures Markets. 19: 475-498.
39.Ljung, G. and G. Box, 1978. “On a Measure of Lack of Fit in Time Serious Models,” Biometrica. 65: 297-303.
40.Min, J. H. and M. Najand, 1999. “A Further Investigation of the Lead-Lag Relationship between the Spot Market and Stock Index Futures: Early Evidence form Korea,” Journal of Futures Markets. 19: 217-232.
41.Nelson, D., 1991. “Conditional Heteroskedasticity in Asset Returns: A New Approach,” Econometrica. 59: 347-370.
42.Poskitt, R., 2009. “Price Discovery in Electronic Foreign Exchange Markets: The Sterling/ Dollar Market,” Journal of Futures Markets. 30(6): 590-606.
43.Quan, J., 1992. “Two Step Testing Procedure for Price Discovery Role of Futures Prices,” Journal of Futures Markets. 12: 139-149.
44.Ross, S. A., 1989. “Information and Volatility: The No-Arbitrage Martingale Approach to Timing and Resolution Irrelevancy,” Journal of Finance. 44: 1-17.
45.Shiskin, J., A. H. Young and J. C. Musgrave, 1967. The X-11 Variant of the Census Method II Seasonal Adjustment Program. U.S.: Census Bureau.
46.United States Department of Agriculture, 2010. Foreign Agricultural Service. New York: United States Department of Agriculture.
47.United States Department of Agriculture, 2010.OECD-FAO Agricultural Outlook 2010-2019. New York: United States Department of Agriculture.
48.Weaver, R. D. and A. Banerjee, 1990. “Does Futures Trading Destabilize Cash Prices? Evidence for U.S. Live Beef Cattle,” Journal of Futures Markets. 10(1): 41-60.
49.Werner, I. M. and A. W. Kleidon, 1996. “U.K. and U.S. Trading of British Cross-Listed Stocks: An Intraday Analysis of Market Integration,” Review of Financial Studies. 9(2): 619-994.
50.Yoo, J. and G. S. Maddala, 1991. “Risk Premia and Price Volatility in Futures Markets,” Journal of Futures Markets. 11(2): 165-177.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37384-
dc.description.abstract2007年之後國際農產品價格波動程度加劇,氣候變遷引起的極端氣候之發生頻率和影響範圍擴大之下,導致未來產生劇烈的農產品價格波動可能性增加,隨著農產品期貨交易需求的高漲,期貨對現貨市場價格波動性的影響及其隱含經濟意義成為首要關注的焦點。
本研究以GARCH模型分析日本咖啡期貨引入對現貨市場價格波動性變化的影響,並探討現貨市場資訊傳遞速度是否有顯著改善。實證結果顯然較為支持開放期貨交易有助於現貨市場價格形成機能的看法。在期貨上市後,市場資訊流通速度更為快速,且受干擾因子影響時間縮短,即引入期貨商品後市場資訊能更迅速地反應在現貨價格上。在EGARCH模型實證結果中,市場正負面消息造成波動性的不對稱性現象,以及高風險伴隨高報酬的風險溢酬假說,未有顯著證據說明以上現象,但其參數結果皆顯示,咖啡期貨契約上市對於現貨市場資訊傳遞速度有正面影響。
zh_TW
dc.description.abstractThe agricultural food prices have risen rapidly since 2007. The climate change has an impact on the agricultural food price volatility. With an increase of the agricultural futures trades, we concern the effect of futures on spot price volatility and its economic implication.
We use the GARCH model to examine the introduction effect for Japanese coffee futures on spot price volatility, and also test whether the efficiency of information transmission in spot market has been improved or not. The empirical results show that the introduction for futures markets can help to catch the spot market price. After futures trading, the efficiency of information transmission is increased and the effect of innovation shocks on the volatility declines. It implies that the market information can be reflected more quickly in the spot price after futures trading. We didn’t find the evidence in support of the asymmetric and the risk premium hypothesis that the risk premium increases with the higher asset risk with EGARCH and GARCH-M models. But the empirical evidence concerning the impacts of futures trading on information flow is significant. Futures trading helps the spot market system more stabilized.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:26:19Z (GMT). No. of bitstreams: 1
ntu-100-R98627009-1.pdf: 574018 bytes, checksum: f8a043126964d4d3e48507cc3cf523a5 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents論文口試委員審定書...................................................................................................i
謝辭...................................................................................................ii
中文摘要...................................................................................................iii
英文摘要..................................................................................................iv
目錄........................................................................................................v
表目錄.....................................................................................................vi
圖目錄......................................................................................................vii
第一章 前言 1
第二章 文獻回顧 5
第三章 影響咖啡價格因素與世界主要咖啡期貨市場概況 11
第四章 研究資料 15
第五章 研究方法 19
第一節 季節性調整X-12-ARIMA介紹 19
第二節 結構性轉變診斷 20
第三節 ARCH模型與GARCH模型 22
第四節 EGARCH模型 26
第五節 GARCH-M模型 27
第六節 模型診斷性檢定 29
第六章 實證分析結果 31
第七章 結論 40
參考文獻......................................................…………………………………………..42
附錄一............................................................………………………………………….47
dc.language.isozh-TW
dc.subject風險溢酬zh_TW
dc.subject資訊傳遞zh_TW
dc.subject農產品期貨zh_TW
dc.subject價格波動性zh_TW
dc.subjectGARCH模型zh_TW
dc.subject不對稱性現象zh_TW
dc.subjectprice volatilityen
dc.subjectinformation transmissionen
dc.subjectagricultural futuresen
dc.subjectasymmetricen
dc.subjectGARCH modelen
dc.subjectrisk premiumen
dc.title日本咖啡期貨契約上市對現貨價格波動性與資訊傳遞之影響zh_TW
dc.titleSpot Price Volatility and Information Transmission: Evidence from Japanese Coffee Futures Marketsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor巫春洲(Chun-Chou Wu)
dc.contributor.oralexamcommittee楊奕農(Yi-Nung Yang),江長周(Chang-Chou Chiang),顏晃平(Huang-Ping Yen)
dc.subject.keyword資訊傳遞,農產品期貨,價格波動性,GARCH模型,不對稱性現象,風險溢酬,zh_TW
dc.subject.keywordinformation transmission,agricultural futures,price volatility,GARCH model,asymmetric,risk premium,en
dc.relation.page47
dc.rights.note有償授權
dc.date.accepted2011-08-11
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業經濟學研究所zh_TW
顯示於系所單位:農業經濟學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
560.56 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved