請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37382完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 雷立芬 | |
| dc.contributor.author | Wen-Yu Hsu | en |
| dc.contributor.author | 徐玟玗 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:26:15Z | - |
| dc.date.available | 2009-07-23 | |
| dc.date.copyright | 2008-07-23 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-17 | |
| dc.identifier.citation | 周雨田、巫春洲、劉炳麟,2004。「動態波動模型預測能力之比較與實證」,財務金融學刊。12卷,1期,1-25。
楊奕農,2005。時間序列分析。台北:雙葉書廊。 鄭婉秀、鄒易凭、蘇欣玫,2006。「商品期貨波動性之預測~CARR模型之應用」,朝陽商管評論。5卷,2期,115-132。 Alizadeh, S., M. W. Brandt, and F. X. Diebold, 2002. “Range-Based Estimation of Stochastic Volatility Models,” Journal of Finance. 57:1047-1791. Baillie, R. T. and R. J. Myers, 1991.“Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge,”Journal of Applied Econometrics. 6:109-124. Black, F., 1976. “Studies of Stock Price Volatility Changes,” Proceeding of the 1976 Meetings of the Business and Economic Statistics Section. pp.177-181. American Statistical Association. Bollerslev, T., 1986. “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics. 31:307-327. Bollerslev, T. and J. M. Wooldridge, 1992. “Quasi-Maximum Likelihood Estimation and Inference in Dynamic Models with Time Varying Covatiances,” Econometric Reviews. 11:143-172. Bollerslev, T., R. Chou and K. Kroner, 1992. “ARCH Modelling in Finance:A Review of the Theory and Empirical Evidence,” Journal of Econometrics. 52:5-59. Bollerslev, T., R. Engle and J. Wooldridge, 1988. “A Capital Asset Pricing Model with Time-vary Covariance,” Journal of Political Economy. 96:116-131. Brailsford, T. J. and R. W. Faff, 1996. “An Evaluation of Volatility Forecasting Techniques,” Journal of Banking and Finance. 20:165-185. Brandt, M. W. and C. S. Jones, 2006. “Volatility Forecasting With Range-Based EGARCH Models,” Journal of Business and Economic Statistics. 24:470-486. Cassuto, A. E., 1995. “Non-Normal Error Patterns:How to Handle Them,” The Journal of Business Forecasting:Methods and Systems. 14:15-16. Chen, S. S. and H. C. Chen, 2007. “Oil Prices and Real Exchange Rate,” Energy Economics. 29:390-404. Chou, R. Y., 2005. “Forecasting Financial Volatilities with Extreme Values:The Conditional Autoregressive Range(CARR)Model,” Journal of Money, Credit, and Banking. 37:561-582. Christie, A. A., 1982. “The Stochastic Behavior of Common Stock Variances:Value, Leverage, and Interest Rate Effects,” Journal of Financial Economics. 10:407-432. Christoffersen, P. and F. X. Diebold, 2000. “How Relevant Is Volatility Forecasting for Financial Risk Management,” Review of Economics and Statistics. 82:1-11. Dickey, D. A. and W. A. Fuller, 1981. “Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root,” Econometrica. 49:1057-1072. Diebold, F. and R. S. Mariano, 1995. “Comparing Predictive Accuracy,” Journal of Business and Economic Studies. 13:253-263. Enders, W., 2004. Applied Econometric Time Series. New York:John Willey and Sons, Inc. Engle, R., 1982. “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of U.K. Inflation,” Econometrica. 50:987-1008. Engle, R. F. and C. W. J. Granger, 1987. “Cointegration and Error Correction Representation, Estimation and Testing,” Econometrica. 55:251-276. Engle, R. F. and J. R. Russel, 1998. “Autoregressive Conditional Duration:A New Model For Irregularly Spaced Transaction Data,” Econometrica. 66:1127-1162. Fama, E. F., 1965. “The Behavior of Stock Market Prices,” Journal of Business. 38:34-105. Ferderer, J. P., 1996. “Oil Price Volatility and the Macroeconomy,” Journal of Macroeconomics. 18:1-26. Fleming, J. and B. Ostdiek, 1999. “The Impact of Energy Derivatives on The Crude Oil Market,” Energy Economics. 21:135-167. French, K., W. Schwert and R. Stambaugh, 1987. “Expected Stock Returns and Volatility,” Journal of Financial Economics. 19:3-29. Gallant, A., C. Hsu and G. Tauchen, 1999. “Calculating Volatility Diffusions and Extracting Integrated Volatility,” Reiview of Economics and Statistics. 81:617-631. Huang, R. D., R. W. Masulis, and H. R. Stoll, 1996. “Energy Shocks and Financial Markets,” Journal of Futures Markets. 16:39-56. Inoue, A. and L. Kilian, 2004. “In Sample or Out of Sample Test for Predictability:Which One Should We Use,” Econometric Reviews. 23:371-402. Jain, P. C. and G. H. John, 1988. “The Dependence between Hourly Prices and Trading Volume,”Journal of Financial and Quantitative Analysis. 23:269-283. Jimenez-Rodriguez, R. and M. Sanchez, 2005. “Oil Price Shocks and Real GDP Growth:Empirical Evidence for Some OECD Countries.” Applied Economics. 37:201-228. Karpoff, J. K., 1988. “Cost Short Sales and the Correlation and Current Trading Volume,”Journal of Financial Research. 11:173-188. Lee, K., S. Ni, and R. A. Ratti, 1995. “Oil Shocks and the Macroeconomy:the Role of Price Variability,” The Energy Journal. 16:39-56. Mandelbrot, B., 1963. “The Variation of Certain Speculative Prices,” Journal of Business. 36:294-419. Morgan, I. G., 1976. “Stock Price and Heteroskedasticity,” Journal of Business. 49:496-508. Narayan, P. K. and S. Narayan, 2007. “Modelling Oil Price Volatility,” Energy Policy. 35:6549-6553. Nelson, D. B., 1991. “Conditional Heteroskedasticity in Asset Returns:A New Approach,” Econometrica. 59:347-370. Newbold, P. and C. W. J. Granger, 1974. “Experience with Forecasting Univariate Time Series and the Combination of Forecasts,” Journal of the Royal Statistical Society. 137:131-165. Parkinson, M., 1980. “The Extreme Value Method for Estimating the Variance of the Rate of Return,” Journal of Business. 53:61-65. Pindyck, R. S., 1999. “The Long-run Evolution of Energy Prices,” The Energy Journal. 20:1-27. Pindyck, R. S., 2004. “Volatility in Natural Gas and Oil Markets,” Journal of Energy and Development. 30:1-21. Plourde, A. and G. Watkins, 1998. “Crude Oil Prices between 1985 and 1994:How Volatile in Relation to Other Commodities,” Resource and Energy Economics. 20:245-262. Regnier, E., 2006. “Oil and Energy Price Volatility,” Energy Economics. 29:405-427. Ripple, R. D. and I. A. Moosa, 2007. “Hedging Effectiveness and Futures Contract Maturity:The Case of NYMEX crude oil futures.” Applied Financial Economics. 17::683-689. Sadorsky, P., 1999. “Oil Price Shocks and Stock Market Activity,” Energy Economics. 21:449-469. Sadorsky, P., 2003. “The Macroeconomic of Determinants of Technology Stock Price Volatility,” Review of Financial Economics. 12:191-205. Sadorsky, P., 2006. “Modeling and Forecasting Petroleum Futures Volatility,” Energy Economics. 28:467-488. Terry, E., 2005. “Minimum-Variance Futures Hedging Under Alternative Return Specifications,” The Journal of Futures Markets. 25:537-552. Verleger, P. K., 1993. Adjusting to Volatile Energy Prices. Washiton, DC.:Institute for International Economics. West, K. D. and D. Cho, 1995. “The Predictive Ability of Several Models of Exchange Rate Volatility,” Journal of Econometrics. 69:367-391. Yang, C. W., M. J. Hwang, and B. N. Huang, 2002. “An Analysis of Factors Affecting Price Volatility of the US Oil Market,” Energy Economics. 24:107-119. Yang, D. and Q. Zhang, 2000. “Drift Independent Volatility Estimation Based on High, Low, Open, and Close Prices,” Journal of Business. 73:477-491. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37382 | - |
| dc.description.abstract | 原油價格近年來因為不斷上漲而受到各方矚目,由於原油商品價格之波動性較其他商品來得大,目前多數致力於此方面的研究中,皆以考慮原油價格波動性之模型進行分析。本研究擬比較多種波動性模型在西德州及布蘭特原油的配適度與預測績效,以提供原油價格波動性相關實證研究之基礎模型參考。
本研究採用了以報酬及變幅為基礎的波動性模型,其中以報酬率為基礎的模型有:Bollerslev(1986)提出的GARCH模型及Nelson(1991)提出的EGARCH模型;以變幅為基礎之模型則為Chou(2005)所提出的CARR模型。將原油價格配適於不同的波動性模型後,依據估計結果進行樣本外預測,比較各模型之預測誤差。此外,本研究亦採用DM檢定為統計上之顯著性檢定,找出較能擷取原油價格波動特性的模型。 利用樣本區間為1995年至2007年之西德州和布蘭特原油價格週資料,本研究得到之實證結果為:就波動性模型樣本內配適而言,CARR模型的表現較佳,且該模型對於短期的波動反應亦較敏感;就波動性模型樣本外預測誤差相較,CARR模型估計出的預測誤差值也明顯較小;根據DM檢定,在短期的預測上,CARR模型顯著優於其他模型,但在長期預測方面,則無法比較各模型之優劣。 就實證結果而言,無論所選用之樣本為西德州原油或布蘭特原油,經由模型估計、預測誤差比較、統計上之顯著性檢定,以變幅為基礎之模型和以報酬為基礎之模型相較之下,更能擷取原油價格的波動性。 | zh_TW |
| dc.description.abstract | This paper uses different heteroskedasticity models to oil price data and compares the performance of them. The goal of this thesis is to find the model which is better for modeling and forecasting oil prices.
There are two branches of volatility models. One is the return-based model, and the other is the range-based model. For these two branches, this paper uses GARCH model, EGARCH model, and CARR model. The DM test is also used to provide the statistical result. Based on the empirical results, CARR model is more sensitive to the volatility than other models. The forecast error of CARR model is also smaller. Furthermore, out-of-sample forecasts of CARR model is dominant based on the result of the DM test, but this domination only exists when the volatility prediction is a short-horizon phenomenon. To conclude, the range-based model such as CARR model has better forecast performance than the return-based model such as GARCH and EGARCH models. By testing of the model predictability, CARR model performs better than others as well. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:26:15Z (GMT). No. of bitstreams: 1 ntu-97-R95627013-1.pdf: 914263 bytes, checksum: 55a684711e6dce62b0b8ddc6f1240c9f (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 第一節 研究動機與背景 1 第二節 研究目的與論文架構 2 第二章 文獻回顧 4 第一節 波動性模型之發展 4 第二節 波動性模型預測方法之比較 6 第三章 研究方法與實證資料整理 8 第一節 波動性預測模型 8 第二節 樣本外預測方法 14 第三節 預測績效評估與檢定 17 第四節 原油價格週資料的樣本敘述統計量 18 第五節 單根檢定 26 第四章 實證結果分析與模型預測績效比較 28 第一節 模型參數估計 28 第二節 各模型的樣本內配適診斷 32 第三節 各模型之樣本外預測能力 36 第四節 不同模型間之樣本外預測相對績效比較 41 第五章 結論 60 參考文獻 62 附錄 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | DM檢定 | zh_TW |
| dc.subject | 原油價格 | zh_TW |
| dc.subject | CARR模型 | zh_TW |
| dc.subject | CARR model | en |
| dc.subject | GARCH model | en |
| dc.subject | Oil Price | en |
| dc.subject | DM test | en |
| dc.subject | EGARCH model | en |
| dc.title | 原油價格波動性模型之比較 | zh_TW |
| dc.title | A Comparison of the Heteroskedasticity Models For Crude Oil Prices | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭震坤,劉鋼 | |
| dc.subject.keyword | 原油價格,CARR模型,DM檢定, | zh_TW |
| dc.subject.keyword | Oil Price,GARCH model,EGARCH model,CARR model,DM test, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業經濟學研究所 | zh_TW |
| 顯示於系所單位: | 農業經濟學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 892.83 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
