請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37377
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴君亮 | |
dc.contributor.author | Kuang-Heng Lu | en |
dc.contributor.author | 盧光恆 | zh_TW |
dc.date.accessioned | 2021-06-13T15:26:05Z | - |
dc.date.available | 2008-07-21 | |
dc.date.copyright | 2008-07-21 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-17 | |
dc.identifier.citation | [1] Sir Taylor G., 1952, Analysis of the swimming of long and narrow animals, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.214, Issue.1117, pp.158-183.
[2] Graham J.B., Lowell W.R., Rubinoff I., 1987, Surface and subsurface swimming of the sea-snake pelamis-platurus, Journal of Experimental Biology, Vol.127, pp.27-44. [3] Gillis G.B., 1996, Undulatory locomotion in elongate aquatic vertebrates: Anguilliform swimming since Sir James Gray, American Zoologist, Vol.36, Issue.6, pp.656-665. [4] Gillis G.B., 1997, Anguilliform locomotion in an elongate salamander (Siren intermedia): Effects of speed on axial undulatory movements, Journal of Experimental Biology, Vol.200, Issue.4, pp.767-784. [5] Gillis G.B., 1998, Neuromuscular control of anguilliform locomotion: Patterns of red and white muscle activity during swimming in the American eel Anguilla rostrata, Journal of Experimental Biology, Vol.201, Issue.23, pp.3245-3256. [6] Shine R., Cogger H.G., Reed R.R., 2003, Aquatic and terrestrial locomotor speeds of amphibious sea-snakes (Serpentes, Laticaudidae), Journal of Zoology, Vol.259, pp.261-268. [7] Pattishall A., Cundall D., 2008, Dynamic changes in body form during swimming in the water snake Nerodia sipedon, Zoology, Vol.111, Issue.1, pp.48-61. [8] Crespi A., Badertscher A., Guignard A., Ijspeert A.J, 2004, An amphibious robot capable of snake and lamprey-like locomotion, Proceedings of the 35th international symposium on robotics (ISR 2004), March 2004. [9] Crespi A., Badertscher A., Guignard A., Ijspeert A.J, 2005, AmphiBot I : an amphibious snake-like robot, Robotics and Autonomous Systems, Vol.50, Issue.4, pp.163-175. [10] Shao J., Wang L., Yu J., 2008, Development of an artificial fish-like robot and its application in cooperative transportation, Control Engineering Practice , Vol.16, Issue.5, pp. 569-584. [11] Goldstein S., 1938, Modern developments in fluid dynamic, Oxford: Clarendon Press, p.425. [12] Crandall H., Dahl C., Lardner J., 1978, An introduction to the mechanics of solids second edition with SI Units, McGraw-Hill, pp.300-302, 417-426. [13] Nakabo Y., Mukai T., Asaka K., 2005, Propulsion model of snake-like swimming artificial muscle, The 2005 IEEE International Conference on Robotics and Biomimetics. [14] Ijspeert A.J., Hallam J., Willshaw D., 1999, Evolving swimming controllers for a simulated lamprey with inspiration from neurobiology, Adaptive Behavior, Vol.7, Issue.2, pp.151-172. [15] Ijspeert A.J., Kodjabachian J., 1999, Evolution and development of a central pattern generator for the swimming of a lamprey, Artificial Life, Vol.5, Issue.3, pp.247-269. [16] Crespi A., Ijspeert A.J, 2006, AmphiBot II: an amphibious snake robot that crawls and swims using a central pattern generator, Proceedings of the 9th International Conference on Climbing and Walking Robots (CLAWAR 2006), pp.19-27. [17] Ijspeert A.J, Crespi A., Ryczko D., Cabelguen J.M., 2007, From swimming to walking with a salamander robot driven by a spinal cord model, Science, Vol.315, Issue.5817, pp. 1416-1420. [18] Pennisi E., 2007, Evolution - Robot suggests how the first land animals got walking, Science, Vol.315, Issue.5817, pp. 1352-1353. [19] Crespi A., Ijspeert A.J, 2008, Online optimization of swimming and crawling in an amphibious snake robot, IEEE Transactions on Robotics, Vol.24, Issue.1, pp. 75-87. [20] Ueoka Y., Gong J., Osada Y., 1997, Chemomechanical polymer gel with fish-like motion, Journal of Intelligent Material Systems and Structures, Vol.8, Issue.5, pp. 465-471. [21] Guo S.X., Fukuda T., Asaka K., 2003, A new type of fish-like underwater microrobot, IEEE-ASME Transactions on Mechatronics, Vol.8, Issue.1, pp. 136-141. [22] Tomie M., Takiguchi A., Honda T., Yamasaki J., 2005, Turning performance of fish-type microrobot driven by external magnetic field, IEEE-ASME Transactions on Mechatronics, Vol.41, Issue.10, pp. 4015-4017. [23] Crespi A., Lachat D., Pasquier A., Ijspeert A.J., 2008, Controlling swimming and crawling in a fish robot using a central pattern generator, Autonomous Robots, Vol.25, Issue.1-2, pp. 3-13. [24] Otake M., Kagami Y., Inaba M., Inoue H., 2002, Motion design of a starfish-shaped gel robot made of electro-active polymer gel, Robotics and Autonomous Systems, Vol.40, Issue.2-3, pp. 185-191. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37377 | - |
dc.description.abstract | 本論文的研究主要分成兩大部分。第一部分旨在提出線性放大、非等振幅的行進波形,以改進Sir Taylor的正弦波形,使之能更適切描繪蛇在水中的游動現象。研究發現,非等振幅行進波形較之於正弦波形不僅具有較佳的游動效率,在能量消耗上也更有效率,同時和實際觀察的量測值也更為接近。
論文的第二部分則主要在於以第一部分的研究為基礎,探討不同波形對游動現象的影響,俾能對日後軟性機器蛇的設計有所助益。除正弦波形外,分析的波形主要分成兩大類;一類稱之為凸形波(convex wave),一類稱之為凹形波(concave wave)。凸形波的特徵在於波形的前緣相較於正弦波形具有較大的斜率,波形較為陡峭,凹形波則在波形的前緣具有較小的斜率,波形較為緩和。研究發現若以游動速度為考量,凸形波會是設計上較佳的選擇;而若以所需耗費的彎曲能量為考量,則正弦波會是較佳的選擇。 | zh_TW |
dc.description.abstract | Two main subjects are theoretically investigated by the present study. In the first part of this study, the traveling waves with linearity increasing amplitudes, instead of the traveling sine waves analyzed by Sir Taylor, are proposed to simulate the swimming motion of snakes. The result indicates that, by generating traveling waves with linearily increasing amplitudes, the snake will swim more efficiently, the predictions by the new mathematical model are closer to the observational data than those by Sir Taylor.
The second part of the present study is aimed at investigating the shape effect on the swimming characteristics of a snake-like soft robot. Using sine wave as the reference, two types of wave forms are studied. One, called convex wave, has a larger slope and shape changes more rapidly than the sine wave in the leading portion of the body. The other, called concave wave, possesses a smaller slope and the shape changes mildly in the leading portion of the body. It is found from the analysis that the traveling convex waves will be the best choice for generating a lager swimming velocity of the snake-like soft robot. However, The traveling sine waves are preferred when energy saving is the main consideration. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:26:05Z (GMT). No. of bitstreams: 1 ntu-97-R94522101-1.pdf: 3422987 bytes, checksum: d5a1115bf057240488ad7c5c468d2172 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III ABSTRACT IV 目錄 V 圖目錄 VII 表目錄 IX 符號說明 X 第一章 緒論 1 1-1 自然現象與工業界應用 1 1-2 文獻回顧 1 1-3 研究動機與目地 2 1-4 研究方向與課題 3 1-5 論文內容與結構 4 第二章 SIR TAYLOR的理論分析模式與結果 5 2-1 基本假設 5 2-2 移動波形的座標選取與幾何關係 5 2-3 蛇身的受力與平衡條件 7 2-4 能量消耗估算 12 2-5 結果與討論 13 2-6 SIR TAYLOR分析模式的限制 18 第三章 非等振幅行進波之受力分析 19 3-1 蛇的游動實例 19 3-2 數學模式和幾何關係式 21 3-3 蛇身的受力與平衡條件 23 3-4 能量消耗估算 25 3-5 結果與討論 25 第四章 不同波形的游動特性分析 32 4-1 凸形波、凹形波,及正弦波 32 4-2 波形對流動特性的影響 35 4-3 彎曲能量的假設與推導 42 4-4 彎曲能量的估算 48 4-5 軟性機器動物發展簡介 49 第五章 結論與未來展望 57 5-1 結論 57 5-2 未來展望 57 參考文獻 58 | |
dc.language.iso | zh-TW | |
dc.title | 以簡化的模式探討蛇及軟性機器蛇的游動特性 | zh_TW |
dc.title | Theoretical Analysis of the Swimming Characteristics of Snakes and Snake-like Soft Robots Using Simplified Models | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃漢邦,王興華,施文彬 | |
dc.subject.keyword | 行進波,游動特性,軟性機器蛇,凸形波,凹形波, | zh_TW |
dc.subject.keyword | traveling waves,swimming characteristics,snake-like soft robot,convex wave,concave wave, | en |
dc.relation.page | 61 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 3.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。