Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37368
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳美如
dc.contributor.authorPei-Wen Yangen
dc.contributor.author楊珮雯zh_TW
dc.date.accessioned2021-06-13T15:25:46Z-
dc.date.available2013-08-13
dc.date.copyright2008-08-13
dc.date.issued2008
dc.date.submitted2008-07-18
dc.identifier.citationAllan, G. J., Inman, G. J., Parker, B. D., Rowe, D. T. & Farrell, P. J. (1992). Cell growth effects of Epstein-Barr virus leader protein. J Gen Virol 73 ( Pt 6), 1547-51.
Allday, M. J. & Farrell, P. J. (1994). Epstein-Barr virus nuclear antigen EBNA3C/6 expression maintains the level of latent membrane protein 1 in G1-arrested cells. J Virol 68, 3491-8.
Asai, R., Kato, A., Kato, K., Kanamori-Koyama, M., Sugimoto, K., Sairenji, T., Nishiyama, Y. & Kawaguchi, Y. (2006). Epstein-Barr virus protein kinase BGLF4 is a virion tegument protein that dissociates from virions in a phosphorylation-dependent process and phosphorylates the viral immediate-early protein BZLF1. J Virol 80, 5125-34.
AuCoin, D. P., Colletti, K. S., Cei, S. A., Papouskova, I., Tarrant, M. & Pari, G. S. (2004). Amplification of the Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 lytic origin of DNA replication is dependent upon a cis-acting AT-rich region and an ORF50 response element and the trans-acting factors ORF50 (K-Rta) and K8 (K-bZIP). Virology 318, 542-55.
Babcock, G. J., Decker, L. L., Volk, M. & Thorley-Lawson, D. A. (1998). EBV persistence in memory B cells in vivo. Immunity 9, 395-404.
Baer, R., Bankier, A. T., Biggin, M. D., Deininger, P. L., Farrell, P. J., Gibson, T. J., Hatfull, G., Hudson, G. S., Satchwell, S. C., Seguin, C. & et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-11.
Bai, L. & Merchant, J. L. (2000). Transcription factor ZBP-89 cooperates with histone acetyltransferase p300 during butyrate activation of p21waf1 transcription in human cells. J Biol Chem 275, 30725-33.
Bai, L. & Merchant, J. L. (2001). ZBP-89 promotes growth arrest through stabilization of p53. Mol Cell Biol 21, 4670-83.
Bai, L., Yoon, S. O., King, P. D. & Merchant, J. L. (2004). ZBP-89-induced apoptosis is p53-independent and requires JNK. Cell Death Differ 11, 663-73.
Baumann, M., Feederle, R., Kremmer, E. & Hammerschmidt, W. (1999). Cellular transcription factors recruit viral replication proteins to activate the Epstein-Barr virus origin of lytic DNA replication, oriLyt. Embo J 18, 6095-105.
Baumforth, K. R., Young, L. S., Flavell, K. J., Constandinou, C. & Murray, P. G. (1999). The Epstein-Barr virus and its association with human cancers. Mol Pathol 52, 307-22.
Bell, S. P. & Dutta, A. (2002). DNA replication in eukaryotic cells. Annu Rev Biochem 71, 333-74.
Borza, C. M. & Hutt-Fletcher, L. M. (2002). Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat Med 8, 594-9.
Chan, S. R. & Chandran, B. (2000). Characterization of human herpesvirus 8 ORF59 protein (PF-8) and mapping of the processivity and viral DNA polymerase-interacting domains. J Virol 74, 10920-9.
Chang, C. K. & Balachandran, N. (1991). Identification, characterization, and sequence analysis of a cDNA encoding a phosphoprotein of human herpesvirus 6. J Virol 65, 7085.
Chang, L. K., Chung, J. Y., Hong, Y. R., Ichimura, T., Nakao, M. & Liu, S. T. (2005). Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res 33, 6528-39.
Chang, L. K., Lee, Y. H., Cheng, T. S., Hong, Y. R., Lu, P. J., Wang, J. J., Wang, W. H., Kuo, C. W., Li, S. S. & Liu, S. T. (2004). Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. J Biol Chem 279, 38803-12.
Chang, Y., Tung, C. H., Huang, Y. T., Lu, J., Chen, J. Y. & Tsai, C. H. (1999). Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol 73, 8857-66.
Chaudhuri, B., Xu, H., Todorov, I., Dutta, A. & Yates, J. L. (2001). Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc Natl Acad Sci U S A 98, 10085-9.
Chee, M. S., Bankier, A. T., Beck, S., Bohni, R., Brown, C. M., Cerny, R., Horsnell, T., Hutchison, C. A., 3rd, Kouzarides, T., Martignetti, J. A. & et al. (1990). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154, 125-69.
Chee, M. S., Lawrence, G. L. & Barrell, B. G. (1989). Alpha-, beta- and gammaherpesviruses encode a putative phosphotransferase. J Gen Virol 70 ( Pt 5), 1151-60.
Chen, C. J., Deng, Z., Kim, A. Y., Blobel, G. A. & Lieberman, P. M. (2001). Stimulation of CREB binding protein nucleosomal histone acetyltransferase activity by a class of transcriptional activators. Mol Cell Biol 21, 476-87.
Chen, L. W., Lin, L. S., Chang, Y. S. & Liu, S. T. (1995). Functional analysis of EA-D of Epstein-Barr virus. Virology 211, 593-7.
Chen, M. R., Chang, S. J., Huang, H. & Chen, J. Y. (2000). A protein kinase activity associated with Epstein-Barr virus BGLF4 phosphorylates the viral early antigen EA-D in vitro. J Virol 74, 3093-104.
Chen, V. J., Metzler, D. E. & Jenkins, W. T. (1987). Reactions of 3'-O-methylpyridoxal 5'-phosphate in aspartate aminotransferase. J Biol Chem 262, 14422-7.
Cheng, L. & Kelly, T. J. (1989). Transcriptional activator nuclear factor I stimulates the replication of SV40 minichromosomes in vivo and in vitro. Cell 59, 541-51.
Chien, Y. C., Chen, J. Y., Liu, M. Y., Yang, H. I., Hsu, M. M., Chen, C. J. & Yang, C. S. (2001). Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 345, 1877-82.
Chiou, J. F., Li, J. K. & Cheng, Y. C. (1985). Demonstration of a stimulatory protein for virus-specified DNA polymerase in phorbol ester-treated Epstein-Barr virus-carrying cells. Proc Natl Acad Sci U S A 82, 5728-31.
Cho, M. S., Milman, G. & Hayward, S. D. (1985). A second Epstein-Barr virus early antigen gene in BamHI fragment M encodes a 48- to 50-kilodalton nuclear protein. J Virol 56, 860-6.
Chua, H. H., Lee, H. H., Chang, S. S., Lu, C. C., Yeh, T. H., Hsu, T. Y., Cheng, T. H., Cheng, J. T., Chen, M. R. & Tsai, C. H. (2007). Role of the TSG101 gene in Epstein-Barr virus late gene transcription. J Virol 81, 2459-71.
Cohen, J. I. (2000a). Epstein-Barr virus infection. N Engl J Med 343, 481-92.
Cohen, P. (2000b). The regulation of protein function by multisite phosphorylation--a 25 year update. Trends Biochem Sci 25, 596-601.
Dawson, C. W., Tramountanis, G., Eliopoulos, A. G. & Young, L. S. (2003). Epstein-Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J Biol Chem 278, 3694-704.
de Jesus, O., Smith, P. R., Spender, L. C., Elgueta Karstegl, C., Niller, H. H., Huang, D. & Farrell, P. J. (2003). Updated Epstein-Barr virus (EBV) DNA sequence and analysis of a promoter for the BART (CST, BARF0) RNAs of EBV. J Gen Virol 84, 1443-50.
Ellison, V. & Stillman, B. (2001). Opening of the clamp: an intimate view of an ATP-driven biological machine. Cell 106, 655-60.
Epstein, M. A., Achong, B. G. & Barr, Y. M. (1964). Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet 1, 702-3.
Epstein, M. A., Henle, G., Achong, B. G. & Barr, Y. M. (1965). Morphological and Biological Studies on a Virus in Cultured Lymphoblasts from Burkitt's Lymphoma. J Exp Med 121, 761-70.
Escargueil, A. E., Plisov, S. Y., Skladanowski, A., Borgne, A., Meijer, L., Gorbsky, G. J. & Larsen, A. K. (2001). Recruitment of cdc2 kinase by DNA topoisomerase II is coupled to chromatin remodeling. Faseb J 15, 2288-90.
Feng, W. H., Westphal, E., Mauser, A., Raab-Traub, N., Gulley, M. L., Busson, P. & Kenney, S. C. (2002). Use of adenovirus vectors expressing Epstein-Barr virus (EBV) immediate-early protein BZLF1 or BRLF1 to treat EBV-positive tumors. J Virol 76, 10951-9.
Fixman, E. D., Hayward, G. S. & Hayward, S. D. (1992). trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66, 5030-9.
Gershburg, E., Marschall, M., Hong, K. & Pagano, J. S. (2004). Expression and localization of the Epstein-Barr virus-encoded protein kinase. J Virol 78, 12140-6.
Gershburg, E. & Pagano, J. S. (2002). Phosphorylation of the Epstein-Barr virus (EBV) DNA polymerase processivity factor EA-D by the EBV-encoded protein kinase and effects of the L-riboside benzimidazole 1263W94. J Virol 76, 998-1003.
Gershburg, E., Raffa, S., Torrisi, M. R. & Pagano, J. S. (2007). Epstein-Barr Virus-Encoded Protein Kinase (BGLF4) Is Involved in Production of Infectious Virus. J Virol 81, 5407-12.
Gibson, W., Murphy, T. L. & Roby, C. (1981). Cytomegalovirus-infected cells contain a DNA-binding protein. Virology 111, 251-62.
Given, D., Yee, D., Griem, K. & Kieff, E. (1979). DNA of Epstein-Barr virus. V. Direct repeats of the ends of Epstein-Barr virus DNA. J Virol 30, 852-62.
Gottesfeld, J. M. & Forbes, D. J. (1997). Mitotic repression of the transcriptional machinery. Trends Biochem Sci 22, 197-202.
Gottlieb, J., Marcy, A. I., Coen, D. M. & Challberg, M. D. (1990). The herpes simplex virus type 1 UL42 gene product: a subunit of DNA polymerase that functions to increase processivity. J Virol 64, 5976-87.
Gruffat, H. & Sergeant, A. (1994). Characterization of the DNA-binding site repertoire for the Epstein-Barr virus transcription factor R. Nucleic Acids Res 22, 1172-8.
Guo, Z. S. & DePamphilis, M. L. (1992). Specific transcription factors stimulate simian virus 40 and polyomavirus origins of DNA replication. Mol Cell Biol 12, 2514-24.
Hammerschmidt, W. & Sugden, B. (1988). Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55, 427-33.
Hanks, S. K. & Hunter, T. (1995). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. Faseb J 9, 576-96.
Heald, R. & McKeon, F. (1990). Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 61, 579-89.
Henneke, G., Koundrioukoff, S. & Hubscher, U. (2003). Multiple roles for kinases in DNA replication. EMBO Rep 4, 252-6.
Hille, J. J., Webster-Cyriaque, J., Palefski, J. M. & Raab-Traub, N. (2002). Mechanisms of expression of HHV8, EBV and HPV in selected HIV-associated oral lesions. Oral Dis 8 Suppl 2, 161-8.
Hinuma, Y., Konn, M., Yamaguchi, J., Wudarski, D. J., Blakeslee, J. R., Jr. & Grace, J. T., Jr. (1967). Immunofluorescence and herpes-type virus particles in the P3HR-1 Burkitt lymphoma cell line. J Virol 1, 1045-51.
Holley-Guthrie, E. A., Seaman, W. T., Bhende, P., Merchant, J. L. & Kenney, S. C. (2005). The Epstein-Barr virus protein BMRF1 activates gastrin transcription. J Virol 79, 745-55.
Hsu, T. Y., Chang, Y., Wang, P. W., Liu, M. Y., Chen, M. R., Chen, J. Y. & Tsai, C. H. (2005). Reactivation of Epstein-Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. J Gen Virol 86, 317-22.
Huang, J., Chen, H., Hutt-Fletcher, L., Ambinder, R. F. & Hayward, S. D. (2003). Lytic viral replication as a contributor to the detection of Epstein-Barr virus in breast cancer. J Virol 77, 13267-74.
Huen, D. S., Henderson, S. A., Croom-Carter, D. & Rowe, M. (1995). The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 10, 549-60.
Hume, A. J., Finkel, J. S., Kamil, J. P., Coen, D. M., Culbertson, M. R. & Kalejta, R. F. (2008). Phosphorylation of retinoblastoma protein by viral protein with cyclin-dependent kinase function. Science 320, 797-9.
Israel, B. F. & Kenney, S. C. (2003). Virally targeted therapies for EBV-associated malignancies. Oncogene 22, 5122-30.
Izumiya, Y., Izumiya, C., Van Geelen, A., Wang, D. H., Lam, K. S., Luciw, P. A. & Kung, H. J. (2007). Kaposi's sarcoma-associated herpesvirus-encoded protein kinase and its interaction with K-bZIP. J Virol 81, 1072-82.
Kato, K., Yokoyama, A., Tohya, Y., Akashi, H., Nishiyama, Y. & Kawaguchi, Y. (2003). Identification of protein kinases responsible for phosphorylation of Epstein-Barr virus nuclear antigen leader protein at serine-35, which regulates its coactivator function. J Gen Virol 84, 3381-92.
Kawaguchi, Y. & Kato, K. (2003). Protein kinases conserved in herpesviruses potentially share a function mimicking the cellular protein kinase cdc2. Rev Med Virol 13, 331-40.
Kawaguchi, Y., Kato, K., Tanaka, M., Kanamori, M., Nishiyama, Y. & Yamanashi, Y. (2003). Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1delta. J Virol 77, 2359-68.
Kelman, Z. (1997). PCNA: structure, functions and interactions. Oncogene 14, 629-40.
Kerr, M. A. (1990). The structure and function of human IgA. Biochem J 271, 285-96.
Kieff and Rickinson (2001). Epstein-Barr Virus and Its Replication. In Fields Virology, fourth edn, pp. 2511-2573: Lippincott Williams & Wilkins.
Kiehl, A. & Dorsky, D. I. (1991). Cooperation of EBV DNA polymerase and EA-D(BMRF1) in vitro and colocalization in nuclei of infected cells. Virology 184, 330-40.
Kiehl, A. & Dorsky, D. I. (1995). Bipartite DNA-binding region of the Epstein-Barr virus BMRF1 product essential for DNA polymerase accessory function. J Virol 69, 1669-77.
Knight, J. S., Sharma, N. & Robertson, E. S. (2005a). Epstein-Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase. Proc Natl Acad Sci U S A 102, 18562-6.
Knight, J. S., Sharma, N. & Robertson, E. S. (2005b). SCFSkp2 complex targeted by Epstein-Barr virus essential nuclear antigen. Mol Cell Biol 25, 1749-63.
Knotts, T. A., Orkiszewski, R. S., Cook, R. G., Edwards, D. P. & Weigel, N. L. (2001). Identification of a phosphorylation site in the hinge region of the human progesterone receptor and additional amino-terminal phosphorylation sites. J Biol Chem 276, 8475-83.
Kokubo, T., Hashizume, K., Iwase, H., Arai, K., Tanaka, A., Toma, K., Hotta, K. & Kobayashi, Y. (2000). Humoral immunity against the proline-rich peptide epitope of the IgA1 hinge region in IgA nephropathy. Nephrol Dial Transplant 15, 28-33.
Krajewski, S., Tanaka, S., Takayama, S., Schibler, M. J., Fenton, W. & Reed, J. C. (1993). Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53, 4701-14.
Krosky, P. M., Baek, M. C. & Coen, D. M. (2003a). The human cytomegalovirus UL97 protein kinase, an antiviral drug target, is required at the stage of nuclear egress. J Virol 77, 905-14.
Krosky, P. M., Baek, M. C., Jahng, W. J., Barrera, I., Harvey, R. J., Biron, K. K., Coen, D. M. & Sethna, P. B. (2003b). The human cytomegalovirus UL44 protein is a substrate for the UL97 protein kinase. J Virol 77, 7720-7.
Kudoh, A., Daikoku, T., Ishimi, Y., Kawaguchi, Y., Shirata, N., Iwahori, S., Isomura, H. & Tsurumi, T. (2006). Phosphorylation of MCM4 at sites inactivating DNA helicase activity of the MCM4-MCM6-MCM7 complex during Epstein-Barr virus productive replication. J Virol 80, 10064-72.
Lee, C. P., Chen, J. Y., Wang, J. T., Kimura, K., Takemoto, A., Lu, C. C. & Chen, M. R. (2007). Epstein-Barr Virus BGLF4 Kinase Induces Premature Chromosome Condensation through Activation of Condensin and Topoisomerase II. J Virol 81, 5166-80.
Lee, C. P., Huang, Y. H., Lin, S. F., Chang, Y., Chang, Y. C., Kenzo, T. & Chen, M. R. (2008). Epstein-Barr virus BGLF4 Kinase Induces Disassembly of the Nuclear Lamina to Facilitate Virion Production. Summitted
Lehman, I. R. & Boehmer, P. E. (1999). Replication of herpes simplex virus DNA. J Biol Chem 274, 28059-62.
Levitskaya, J., Coram, M., Levitsky, V., Imreh, S., Steigerwald-Mullen, P. M., Klein, G., Kurilla, M. G. & Masucci, M. G. (1995). Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375, 685-8.
Li, J. S., Zhou, B. S., Dutschman, G. E., Grill, S. P., Tan, R. S. & Cheng, Y. C. (1987). Association of Epstein-Barr virus early antigen diffuse component and virus-specified DNA polymerase activity. J Virol 61, 2947-9.
Liao, G., Huang, J., Fixman, E. D. & Hayward, S. D. (2005). The Epstein-Barr Virus Replication Protein BBLF2/3 Provides an Origin-Tethering Function through Interaction with the Zinc Finger DNA Binding Protein ZBRK1 and the KAP-1 Corepressor. J Virol 79, 245-56.
Liao, G., Wu, F. Y. & Hayward, S. D. (2001). Interaction with the Epstein-Barr virus helicase targets Zta to DNA replication compartments. J Virol 75, 8792-802.
Lieberman, P. M. & Berk, A. J. (1991). The Zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein-protein interaction. Genes Dev 5, 2441-54.
Lin, C. T., Chan, W. Y., Chen, W., Huang, H. M., Wu, H. C., Hsu, M. M., Chuang, S. M. & Wang, C. C. (1993). Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab Invest 68, 716-27.
Lin, J. C., Wang, W. Y., Chen, K. Y., Wei, Y. H., Liang, W. M., Jan, J. S. & Jiang, R. S. (2004). Quantification of plasma Epstein-Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N Engl J Med 350, 2461-70.
Lin, K. & Ricciardi, R. P. (1998). The 41-kDa protein of human herpesvirus 6 specifically binds to viral DNA polymerase and greatly increases DNA synthesis. Virology 250, 210-9.
Liu, M. Y., Shih, Y. Y., Li, L. Y., Chou, S. P., Sheen, T. S., Chen, C. L., Yang, C. S. & Chen, J. Y. (2000). Expression of the Epstein-Barr virus BHRF1 gene, a homologue of Bcl-2, in nasopharyngeal carcinoma tissue. J Med Virol 61, 241-50.
Liu, P., Liu, S. & Speck, S. H. (1998). Identification of a negative cis element within the ZII domain of the Epstein-Barr virus lytic switch BZLF1 gene promoter. J Virol 72, 8230-9.
Lo, A. K., To, K. F., Lo, K. W., Lung, R. W., Hui, J. W., Liao, G. & Hayward, S. D. (2007). Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci U S A 104, 16164-9.
Longnecker, R. (2000). Epstein-Barr virus latency: LMP2, a regulator or means for Epstein-Barr virus persistence? Adv Cancer Res 79, 175-200.
Lu, C. C. & Chen, M. R. (2006). Lytic replication of Epstein-Barr virus future virology 1, 435-446.
Lu, C. C., Jeng, Y. Y., Tsai, C. H., Liu, M. Y., Yeh, S. W., Hsu, T. Y. & Chen, M. R. (2006). Genome-wide transcription program and expression of the Rta responsive gene of Epstein-Barr virus. Virology 345, 358-72.
Lu, J., Chen, S. Y., Chua, H. H., Liu, Y. S., Huang, Y. T., Chang, Y., Chen, J. Y., Sheen, T. S. & Tsai, C. H. (2000). Upregulation of tyrosine kinase TKT by the Epstein-Barr virus transactivator Zta. J Virol 74, 7391-9.
Lu, J., Chua, H. H., Chen, S. Y., Chen, J. Y. & Tsai, C. H. (2003). Regulation of matrix metalloproteinase-1 by Epstein-Barr virus proteins. Cancer Res 63, 256-62.
Maga, G. & Hubscher, U. (2003). Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116, 3051-60.
Makarova, O., Kamberov, E. & Margolis, B. (2000). Generation of deletion and point mutations with one primer in a single cloning step. Biotechniques 29, 970-2.
Makhov, A. M., Subramanian, D., Holley-Guthrie, E., Kenney, S. C. & Griffith, J. D. (2004). The Epstein-Barr virus polymerase accessory factor BMRF1 adopts a ring-shaped structure as visualized by electron microscopy. J Biol Chem 279, 40358-61.
Marschall, M., Stein-Gerlach, M., Freitag, M., Kupfer, R., van den Bogaard, M. & Stamminger, T. (2002). Direct targeting of human cytomegalovirus protein kinase pUL97 by kinase inhibitors is a novel principle for antiviral therapy. J Gen Virol 83, 1013-23.
Marsden, H. S., Campbell, M. E., Haarr, L., Frame, M. C., Parris, D. S., Murphy, M., Hope, R. G., Muller, M. T. & Preston, C. M. (1987). The 65,000-Mr DNA-binding and virion trans-inducing proteins of herpes simplex virus type 1. J Virol 61, 2428-37.
Masucci, M. G. (2004). Epstein-Barr virus oncogenesis and the ubiquitin-proteasome system. Oncogene 23, 2107-15.
Mechali, M. (2001). DNA replication origins: from sequence specificity to epigenetics. Nat Rev Genet 2, 640-5.
Merchant, J. L., Bai, L. & Okada, M. (2003). ZBP-89 mediates butyrate regulation of gene expression. J Nutr 133, 2456S-2460S.
Michel, D., Pavic, I., Zimmermann, A., Haupt, E., Wunderlich, K., Heuschmid, M. & Mertens, T. (1996). The UL97 gene product of human cytomegalovirus is an early-late protein with a nuclear localization but is not a nucleoside kinase. J Virol 70, 6340-6.
Morrison, E. E., Wang, Y. F. & Meredith, D. M. (1998). Phosphorylation of structural components promotes dissociation of the herpes simplex virus type 1 tegument. J Virol 72, 7108-14.
Motsch, N., Pfuhl, T., Mrazek, J., Barth, S. & Grasser, F. A. (2007). Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a. RNA Biol 4, 131-7.
Nemerow, G. R., Mold, C., Schwend, V. K., Tollefson, V. & Cooper, N. R. (1987). Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. J Virol 61, 1416-20.
Nigg, E. A. (1993). Targets of cyclin-dependent protein kinases. Curr Opin Cell Biol 5, 187-93.
Pfeffer, S., Zavolan, M., Grasser, F. A., Chien, M., Russo, J. J., Ju, J., John, B., Enright, A. J., Marks, D., Sander, C. & Tuschl, T. (2004). Identification of virus-encoded microRNAs. Science 304, 734-6.
Pulvertaft, R. J. (1964). Phytohaemagglutinin in Relation to Burkitt's Tumour. (African Lymphoma). Lancet 2, 552-4.
Purves, F. C., Ogle, W. O. & Roizman, B. (1993). Processing of the herpes simplex virus regulatory protein alpha 22 mediated by the UL13 protein kinase determines the accumulation of a subset of alpha and gamma mRNAs and proteins in infected cells. Proc Natl Acad Sci U S A 90, 6701-5.
Purves, F. C. & Roizman, B. (1992). The UL13 gene of herpes simplex virus 1 encodes the functions for posttranslational processing associated with phosphorylation of the regulatory protein alpha 22. Proc Natl Acad Sci U S A 89, 7310-4.
Rabson, M., Gradoville, L., Heston, L. & Miller, G. (1982). Non-immortalizing P3J-HR-1 Epstein-Barr virus: a deletion mutant of its transforming parent, Jijoye. J Virol 44, 834-44.
Rickinson, A. B., Rowe, M., Hart, I. J., Yao, Q. Y., Henderson, L. E., Rabin, H. & Epstein, M. A. (1984). T-cell-mediated regression of 'spontaneous' and of Epstein-Barr virus-induced B-cell transformation in vitro: studies with cyclosporin A. Cell Immunol 87, 646-58.
Rickinson and Kieff (2001). Epstein-Barr Virus. In Fields Virology, fourth edn, pp. 2575-2627: Lippincott Williams & Wilkins.
Roeckel, D. & Mueller-Lantzsch, N. (1985). Biochemical characterization of two Epstein-Barr virus early antigen-associated phosphopolypeptides. Virology 147, 253-63.
Schepers, A., Pich, D. & Hammerschmidt, W. (1996). Activation of oriLyt, the lytic origin of DNA replication of Epstein-Barr virus, by BZLF1. Virology 220, 367-76.
Schepers, A., Pich, D., Mankertz, J. & Hammerschmidt, W. (1993). cis-acting elements in the lytic origin of DNA replication of Epstein-Barr virus. J Virol 67, 4237-45.
Seto, E., Yang, L., Middeldorp, J., Sheen, T. S., Chen, J. Y., Fukayama, M., Eizuru, Y., Ooka, T. & Takada, K. (2005). Epstein-Barr virus (EBV)-encoded BARF1 gene is expressed in nasopharyngeal carcinoma and EBV-associated gastric carcinoma tissues in the absence of lytic gene expression. J Med Virol 76, 82-8.
Sinclair, A. J. (2003). bZIP proteins of human gammaherpesviruses. J Gen Virol 84, 1941-9.
Sun, D. & Hurley, L. H. (1994). Cooperative bending of the 21-base-pair repeats of the SV40 viral early promoter by human Sp1. Biochemistry 33, 9578-87.
Takada, K. (2000). Epstein-Barr virus and gastric carcinoma. Mol Pathol 53, 255-61.
Takada, K., Horinouchi, K., Ono, Y., Aya, T., Osato, T., Takahashi, M. & Hayasaka, S. (1991). An Epstein-Barr virus-producer line Akata: establishment of the cell line and analysis of viral DNA. Virus Genes 5, 147-56.
Takagi, S., Takada, K. & Sairenji, T. (1991). Formation of intranuclear replication compartments of Epstein-Barr virus with redistribution of BZLF1 and BMRF1 gene products. Virology 185, 309-15.
Taniuchi, T., Mortensen, E. R., Ferguson, A., Greenson, J. & Merchant, J. L. (1997). Overexpression of ZBP-89, a zinc finger DNA binding protein, in gastric cancer. Biochem Biophys Res Commun 233, 154-60.
Thorley-Lawson, D. A. & Gross, A. (2004). Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med 350, 1328-37.
Triantos, D., Porter, S. R., Scully, C. & Teo, C. G. (1997). Oral hairy leukoplakia: clinicopathologic features, pathogenesis, diagnosis, and clinical significance. Clin Infect Dis 25, 1392-6.
Tsai, C. H. & Glaser, R. (1991). A comparison of Epstein-Barr virus specific proteins expressed by three Epstein-Barr virus isolates using specific monoclonal antibodies. Intervirology 32, 376-82.
Tsai, C. H., Liu, M. T., Chen, M. R., Lu, J., Yang, H. L., Chen, J. Y. & Yang, C. S. (1997). Characterization of Monoclonal Antibodies to the Zta and DNase Proteins of Epstein-Barr Virus. J Biomed Sci 4, 69-77.
Tsai, C. H., Williams, M. V. & Glaser, R. (1991). Characterization of two monoclonal antibodies to Epstein-Barr virus diffuse early antigen which react to two different epitopes and have different biological function. J Virol Methods 33, 47-52.
Tsurumi, T. (1993). Purification and characterization of the DNA-binding activity of the Epstein-Barr virus DNA polymerase accessory protein BMRF1 gene products, as expressed in insect cells by using the baculovirus system. J Virol 67, 1681-7.
Tsurumi, T., Daikoku, T., Kurachi, R. & Nishiyama, Y. (1993a). Functional interaction between Epstein-Barr virus DNA polymerase catalytic subunit and its accessory subunit in vitro. J Virol 67, 7648-53.
Tsurumi, T., Kobayashi, A., Tamai, K., Daikoku, T., Kurachi, R. & Nishiyama, Y. (1993b). Functional expression and characterization of the Epstein-Barr virus DNA polymerase catalytic subunit. J Virol 67, 4651-8.
Tucker, P. W., Slightom, J. L. & Blattner, F. R. (1981). Mouse IgA heavy chain gene sequence: implications for evolution of immunoglobulin hinge axons. Proc Natl Acad Sci U S A 78, 7684-8.
Turner, W. J. & Woodworth, M. E. (2001). DNA replication efficiency depends on transcription factor-binding sites. J Virol 75, 5638-45.
Tye, B. K. & Chang, V. K. (2004). Dual functional regulators coordinate DNA replication and gene expression in proliferating cells. Front Biosci 9, 2548-55.
Wang, J. T., Doong, S. L., Teng, S. C., Lee, C. P., Tsai, C. H. & Chen, M. R. (2008). Epstein-Barr virus BGLF4 Kinase Suppresses the Interferon Regulatory Factor 3 Signaling Pathway. Summitted.
Weiland, K. L., Oien, N. L., Homa, F. & Wathen, M. W. (1994). Functional analysis of human cytomegalovirus polymerase accessory protein. Virus Res 34, 191-206.
Wolf, D. G., Courcelle, C. T., Prichard, M. N. & Mocarski, E. S. (2001). Distinct and separate roles for herpesvirus-conserved UL97 kinase in cytomegalovirus DNA synthesis and encapsidation. Proc Natl Acad Sci U S A 98, 1895-900.
Wong, K. M. & Levine, A. J. (1986). Identification and mapping of Epstein-Barr virus early antigens and demonstration of a viral gene activator that functions in trans. J Virol 60, 149-56.
Xu, Y., Cei, S. A., Rodriguez Huete, A., Colletti, K. S. & Pari, G. S. (2004). Human cytomegalovirus DNA replication requires transcriptional activation via an IE2- and UL84-responsive bidirectional promoter element within oriLyt. J Virol 78, 11664-77.
Xue, S. A. & Griffin, B. E. (2007). Complexities associated with expression of Epstein-Barr virus (EBV) lytic origins of DNA replication. Nucleic Acids Res 35, 3391-406.
Young, L. S. & Murray, P. G. (2003). Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene 22, 5108-21.
Young, L. S. & Rickinson, A. B. (2004). Epstein-Barr virus: 40 years on. Nat Rev Cancer 4, 757-68.
Yue, W., Gershburg, E. & Pagano, J. S. (2005). Hyperphosphorylation of EBNA2 by Epstein-Barr virus protein kinase suppresses transactivation of the LMP1 promoter. J Virol 79, 5880-5.
Zhang, Q., Holley-Guthrie, E., Dorsky, D. & Kenney, S. (1999). Identification of transactivator and nuclear localization domains in the Epstein-Barr virus DNA polymerase accessory protein, BMRF1. J Gen Virol 80 ( Pt 1), 69-74.
Zhang, Q., Holley-Guthrie, E., Ge, J. Q., Dorsky, D. & Kenney, S. (1997). The Epstein-Barr virus (EBV) DNA polymerase accessory protein, BMRF1, activates the essential downstream component of the EBV oriLyt. Virology 230, 22-34.
Zhang, Q., Hong, Y., Dorsky, D., Holley-Guthrie, E., Zalani, S., Elshiekh, N. A., Kiehl, A., Le, T. & Kenney, S. (1996). Functional and physical interactions between the Epstein-Barr virus (EBV) proteins BZLF1 and BMRF1: Effects on EBV transcription and lytic replication. J Virol 70, 5131-42.
Zhou, Z. X., Kemppainen, J. A. & Wilson, E. M. (1995). Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol Endocrinol 9, 605-15.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37368-
dc.description.abstractEB病毒隸屬於人類γ型疱疹病毒。EB病毒的感染,和巴氏淋巴瘤,鼻咽癌與何杰金氏症的形成有高度相關性。在本論文中,主要是針對EB病毒的一個溶裂期蛋白BGLF4的研究。根據序列的分析,BGLF4被認為是人類疱疹病毒UL蛋白質激酶。它被證明是一個Ser/Thr蛋白質激酶,並且具有類似細胞週期蛋白質激酶CDKs的活性。病毒早期蛋白BMRF1(EA-D)是BGLF4第一個確定的病毒蛋白受質。但是BGLF4對BMRF1的磷酸化調控功能尚不清楚。BMRF1除了是病毒溶裂時期的DNA聚合酶輔助因子外,也可以轉活化溶裂期DNA複製啟始區域(oriLyt)上的BHLF1啟動子。BMRF1可以經由細胞轉錄因子Sp1或ZBP-89的反應區域,達成對BHLF1啟動子的轉活化,或是與特早期轉活化因子Zta的共同作用讓BHLF1啟動子達到最高度轉活化。此區域啟動子的活化被認為會增加溶裂期DNA複製啟始的效率。在本研究裏,首先利用專一性抗體,偵測BGLF4在EB病毒進入溶裂期的細胞中發現,BGLF4與BMRF1同屬於病毒溶裂時期早期蛋白,它是以磷酸化蛋白的型式存在,並且主要分佈在細胞核中。BGLF4並且會與BMRF1及病毒特早期轉活化因子Zta共同表現在細胞核中病毒溶裂期DNA複製區域。進一步分析BGLF4對BMRF1磷酸化的殘基位置,及其轉活化功能的調控,發現BGLF4會磷酸化BMRF1上可能的”樞紐區域”(hinge region)中的Ser-337, Thr-344, Ser-349與Thr-355四個位置,達成磷酸化的效果。在功能調控的研究中,發現BGLF4會抑制BMRF1對BHLF1啟動子的轉活化能力,但會加強BMRF1與Zta對BHLF1啟動子之共同轉活化能力,以及Zta本身的轉活化能力。利用仿效磷酸化的突變型BMRF1的分析,進一步證明BGLF4可以藉由上述這四個殘基位置的磷酸化,加強BMRF1與Zta對BHLF1啟動子之共同轉活化能力。有趣的是BMRF1失去在這四個殘基位置上被磷酸化能力的BMRF1突變型2A2V也會受到BGLF4的抑制調控,顯示BGLF4抑制BMRF1單獨對BHLF1啟動子的轉活化能力,並非經由上述的四個殘基位置。在最後一部份的研究中,我們推測BGLF4可能只需辨識-S-P-或-T-P-序列即可對其產生磷酸化。構築在10個S-P-或-T-P-序列上都突變成無法被磷酸化的8A2V的突變株,將BMRF1上所有可能被磷酸化的位置變異,發現此突變株之轉活化能力即不被BGLF4抑制。在共同免疫沈澱反應中,更一步發現BGLF4會阻斷BMRF1 2A2V突變株與細胞中的轉錄因子ZBP-89結合的能力,但是並不會阻斷BMRF1 8A2V與ZBP-89結合。綜合上述的研究結果,我們認為BGLF4會藉由多重機制去調控BMRF1與Zta對溶裂期DNA複製啟始區域BHLF1啟動子的活化功能,以確保溶裂期DNA複製的啟始效率。此研究也提供了γ型人類疱疹病毒(gammaherpesvirus)的DNA聚合酶輔助因子上推測之樞紐區域可能的磷酸化調控。zh_TW
dc.description.abstractEpstein-Barr virus (EBV) belongs to gamma-herpesvirus. Its infection is highly associated with the pathogenesis of human malignancies including Burkitt’s lymphoma (BL), nasopharyngeal carcinoma (NPC), and Hodgkin’s disease (HD). One of the EBV lytic gene products, BGLF4, is what we focused on in the research. BGLF4 was identified as a herpesviral UL protein kinase based on sequence alignment. It is a Ser/Thr protein kinase, and can partially mimic the activities of cellular cyclin-dependent kinases (CDKs). The first identified BGLF4 substrate is the lytic early antigen BMRF1 (EA-D), but its impact on BMRF1 function is unclear. BMRF1 is the viral DNA polymerase processivity factor. In addition to processivity function, BMRF1 carries the transactivation activity to activate viral BHLF1 promoter, which is localized within the region of lytic replication origin (oriLyt). BMRF1 can transactivate BHLF1 promoter alone mediated by Sp1/ZBP-89 sites or synergistically function with immediate early transactivator Zta for maximal activation. The activation of BHLF1 promoter is suggested to be required for the initiation of viral lytic replication. In the current study, we characterized the expression of BGLF4 by specific antibody and further investigated the BGLF4-mediated phosphorylation and functional regulation of BMRF1. We found that BGLF4 is a viral lytic early protein, expresses as a phosphorprotein, and co-localizes with BMRF1 and origin binding protein Zta to the viral replication compartment. Four residues Ser-337, Thr-344, Ser-349 and Thr-355 located in putative hinge region of BMRF1 are mapped to be responsible for the BGLF4-induced hyperphosphorylation. In functional analyses, BGLF4 downregulates BMRF1-induced activation of BHLF1 promoter but enhances the synergistic transactivation of BMRF1 and Zta, and Zta alone on the BHLF1 promoter. By analyzing the phosphorylation-mimicking BMRF1, the phosphorylation of these residues is observed to enhance the synergy of BMRF1 and Zta. Interestingly, the phosphorylation-defective mutant of BMRF1 2A2V that was mutated in the four mapped residues, still can response to BGLF4-induced downregulation as that in the wild type BMRF1. In the final part, we observe the phosphorylation-defective BMRF1 mutant 8A2V which was mutated in all of the 10 proline-dependent phosphorylation sites (SP/TP) of BMRF1, is resistant to BGLF4-induced downregulation of transactivation activity. Moreover, the interaction of BMRF1 2A2V and ZBP-89 is decreased in the presence of BGLF4, but is not observed in BMRF1 8A2V mutant. Taken together, our findings suggest BGLF4 modulates BMRF1 and Zta mediated activation of oriLyt BHLF1 promoter through multiple mechanisms, which may ensure efficient initiation of lytic replication. The study gives an insight to the phosphorylated regulation locating in the possible hinge region of gammaherpes viral processivity factors.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:25:46Z (GMT). No. of bitstreams: 1
ntu-97-F90445114-1.pdf: 6713986 bytes, checksum: 7d91190d2aae9d78da1a2bfea36ea64e (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書…………………………………………………………………...i
Preface………………………………………………………………………………...ii
誌謝…………………………………………………………………………………..iii
中文摘要……………………………………………………………………….……..v
Abstract …………………………………………………………………………….. vii
Contents… …………………………………………………………………………ix
1. INTRODUCTION……………………………………………………………….1
1.1 Discovery of EBV………………………………………………………....1 1.2 EBV associated disease ……………………………………………...1
1.3 Virus and genome structures……………………………………………....2
1.4 Primary infection…………………………………………………………..3
1.5 Latent Infection …………………………………………………………...4
1.5.1 EBNAs………………………………………………………………..4
1.5.2 LMPs……………………………………………………………….…5
1.6 Lytic infection ……………………………………………………………..6
1.6.1 Immediate early genes………………………………………………...6
1.6.2 Early genes………………………………………………………….....8
1.6.3 Late genes………………………………………………………….….8
1.7 OriLyt dependent DNA replication ………………………………………..8
1.8 Protein kinase ……………………………………………………………..10
1.9 Human herpesviral protein kinases………………………………………..10
1.10 BGLF4 protein kinase ...............................................................................11
1.11 Herpesviral DNA polymerase processivity factors ………………….......12
1.12 Functions of BMRF1…………………………………………………......13
1.13 Transactivation function of BMRF1………………………………….….13
1.14 Phosphorylation of EBV processivity factor BMRF1 by BGLF4
protein kinase ………………………………………………………….....14
1.15 Correlation of viral transcription and replication ……………………….15
1.16 Objective of the study…………………………………………………....16
2. MATERIALS AND METHODS ………………………………………….…….18
2.1 Cell culture ……………………………………..........................................18
2.2 Induction of viral lytic cycle……………………………………………....18
2.3 Plasmid construction …...………………………………………………....18
2.4 Transfection, protein extraction and phosphatase treatment ……………...21
2.5 Indirect immunofluorescence (IFA) ……………………………………....21
2.6 BrdU incorporation assay ………………………………………………....22
2.7 Immunoblotting ………………………………………………………....22
2.8 Subcellular fractionation ………………………………………………......23
2.9 Immunoprecipitation assay ………………………………………….......24
2.10 In vitro transcription-coupled translation ………………………………..24
2.11 DNA-cellulose chromatography ………………………………………....25
2.12 Luciferase assay ……………………………………………………….....25
2.13 Purification of bacterially expressed GST fusion BMRF1 proteins ……..26
2.14 IP-kinase assay …………………………………………………………...26
3. RESULTS ………………………………………………………………………...28
3.1 Expression of BGLF4 in EBV positive lymphoid cells during early
stage of lytic replication viral early …………………………………….....28
3.2 BGLF4 expresses as a phosphoprotein ………………………………….....29
3.3 BGLF4 localizes at viral DNA replication compartment…………………..29
3.4 Expression of BGLF4 in EBV-positive epithelial cells ………………….…30
3.5 N-terminal residues 27-70 of BGLF4 are crucial for BGLF4-induced
hyperphosphoryaltion of BMRF1 …………………………………………31
3.6 BGLF4 target residues are mainly located within aa 316–378 of
BMRF1…………………………………………………………………....32
3.7 Ser-337, Thr-344, Ser-349 and Thr-355 of BMRF1 are targeted by
BGLF4 …………………………………………………………………....33
3.8 Ser-337 and Thr-344 of BMRF1 are the major residues
phosphorylated during EBV replication…………………………………..34
3.9 BGLF4-induced phosphorylation results in an anomalous mobility of
BMRF1 on SDS-PAGE…………………………………………………....35
3.10 Nuclear localization of phosphorylation-mimicking BMRF1 …………...36
3.11 DNA binding abilities of phosphorylation-mimicking BMRF1……….....36
3.12 BGLF4 downregulates BMRF1 transactivation activity of the BHLF1
promoter …………………………………………………………………37
3.13 BGLF4 upregulates the transactivation activities of viral
immediate early transactivator Zta ……………………………...……….38
3.14 Enhancement of the synergistic activation of BMRF1 and Zta on the
BHLF1 promoter by BGLF4 …………………………………………….39
3.15 Phosphorylation-mimicking BMRF1 displays stronger synergistic
activity with Zta on the BHLF1 promoter………………………………..39
3.16 Residual phosphorylation of BMRF1 2A2V mutant in vitro……………..40
3.17 Mutation of all SP/TP sites of BMRF1 diminishs BGLF4-induced
phosphorylation on BMRF1……………………………………..………...40
3.18 BMRF1 8A2V mutant is resistant to BGLF4-induced downregulation
of transactivation activity………………………………...………………..41
3.19 BGLF4 affects the interaction of BMRF1 and ZBP-89…………………..41
4. DISCUSSION……………………………………………………………………..43
4.1 Expression of BGLF4 during viral lytic replication…………………….....43
4.2 BGLF4 localizes at the viral DNA replication compartment……………...43
4.3 Phosphorylation of BGLF4 ………………..................................................44
4.4 BGLF4-mediated phosphorylation and functional regulation of
BMRF1………………………………………………………………….....45
4.5 Phosphorylation of BMRF1………………………………………………..46
4.6 Putative hinge region of BMRF1 ……………………………………….....47
4.7 Functional modulation of BGLF4-mediated phosphorylation ………….....47
4.8 Regulation of the transactivation activity of Zta and BMRF1-Zta
synergy by BGLF4…………………………………………………...........48
4.9 Initiation of oriLyt replication……………………………………………...49
4.10 The possible role of BGLF4 in EBV oriLyt replication ……………….....50
4.11 The BGLF4/ZBP-89/BMRF1 and ZBP-89/BGLF4 complexes…….….....51
4.12 Conclusion ……………………………………………………………......52
TABLES……………………………………………………………………………….53
Table 1. Expression of Epstein-Barr virus Latent Genes in Disease……………..53
Table 2. Essential viral proteins for EBV lytic replication and their HSV
Homologs………………………………………………………………..53
Table 3. Oligonucleotide primers to generate site-directed mutants of BMRF1…54
FIGURES…………………………………………………………………………........55
Fig. 1. The schematic structure of EBV oriLyt…………………………………...55
Fig. 2. Hypothetic model of the correlation between BHLF1 transcriptional
activation and oriLyt replication………………………………………….56
Fig.3. Expression kinetics and subcellular localization of BGLF4 in EBV
positive lymphoid cells…………………………………………………….57
Fig. 4. The phosphorylation patterns of BGLF4……………………………….…58
Fig. 5. Colocalization of BGLF4 with BMRF1 and Zta at the viral DNA
replication compartment in EBV positive lymphoid cells……………....59
Fig. 6. Colocalization of BGLF4 with newly synthesized viral DNA…………..60
Fig. 7. Localization of endogenous BGLF4 within the EBV positive
epithelial cells……………………………………………………………61
Fig. 8. Kinase activities of N-terminal deleted BGLF4 mutants in the
phosphorylation of BMRF1…………………………………………....62
Fig. 9. Identification of the region of BMRF1 that is responsible for
BGLF4-induced hyperphosphorylation………………………………….63
Fig. 10. List of the phosphorylation-defective mutants of BMRF1……………...64
Fig. 11. Mapping of the BGLF4 target residues on BMRF1……………………..65
Fig. 12. Hyperphosphorylation of Flag-BMRF1 in EBV replicating NA cells…..66
Fig. 13. Anomaulus mobility of phosphorylation-mimicking BMRF1…………..67
Fig. 14. Localization of phosphorylation-mimicking BMRF1…………………...68
Fig. 15. DNA binding abilities of the BMRF1 phosphorylation mutants………...69
Fig. 16. Regulation of BMRF1-induced BHLF1 promoter activity by
BGLF4 kinase…………………………………………………………….70
Fig. 17. Modulation of the Zta transactivation activities by BGLF4……………..72
Fig. 18. Effects of BGLF4 on the synergistic activation of BHLF1 promoter……73
Fig. 19. The synergistic activities with Zta of BMRF1 phosphorylation
Mutants…………………………………………………………………..74
Fig. 20. In vitro phosphorylation of GST-BMRF1 2A2V and d316-378
mutants…………………………………………………………………...75
Fig. 21. In vitro phosphorylation of 4A2V and 8A2V mutants of GST-BMRF1…76
Fig.22. Effects of BGLF4 on the transactivation activity of BMRF1 SP/TP
phosphorylation-defective mutants………………………………………..77
Fig. 23. The Effect of BGLF4 on the interaction of BMRF1 and SP1………......78
Fig. 24. Effects of BGLF4 on the interaction of BMRF1 and ZBP-89……….....79
Fig. 25. Amino acid sequence alignment of BMRF1 and PF8 reveals
conserved SP and TP motifs within the proline rich regions…………...80
Fig. 26. Hypothetic roles of BGLF4 in modulating of BHLF1
transcription and oriLyt dependent DNA replication…………………...81
REFERENCE………………………………………………………………………….83
APPENDIX I: Publications of the study ………………………………………….......95
APPENDIX II: Plasmids constructed by Yang Pei-Wen (pYPW)………………….....96
APPENDIX III: Cloning vectors………………………………………………….…..98
APPENDIX IV: Primers designed for sequence check …………………………..…..102
APPENDIX V: Experiment protocols………………………………………………..103
Procedure 1: Generation of deletion and point mutations with one primer in
a single cloning step……………………………………………..103
Procedure 2: BBS transfection………………………………………………....105
Procedure 3: Luciferase assay………………………………………………….107
Procedure 4: Akaline phosphotase treatment (CIP)………………………........108
APPENDIX VI: Curriculum Vitae………………………………………………….…109
dc.language.isoen
dc.titleEB病毒BGLF4蛋白質激酶對於BMRF1的磷酸化及功能調控之探討zh_TW
dc.titleStudy on the Epstein-Barr virus BGLF4 Kinase-mediated Phosphorylation and Functional Regulation of BMRF1en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee蔡錦華,陳振陽,黃麗華,林素芳,陳紀如
dc.subject.keywordEB病毒,BGLF4蛋白質激&#37238,BMRF1聚合&#37238,輔助因子,Zta特早期轉活化因子,BHLF1啟動子,溶裂期DNA複製,轉活化,zh_TW
dc.subject.keywordEpstein-Barr virus (EBV),BGLF4 protein kinase,BMRF1 processivity factor,Zta immediate early transactivator,BHLF1 promoter,viral lytic replication,transactivation,en
dc.relation.page110
dc.rights.note有償授權
dc.date.accepted2008-07-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
6.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved