請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37346完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈麗娟(Li-Jiuan Shen) | |
| dc.contributor.author | Yuan-Chen Chang | en |
| dc.contributor.author | 張淵琛 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:25:06Z | - |
| dc.date.available | 2010-08-08 | |
| dc.date.copyright | 2008-08-08 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-18 | |
| dc.identifier.citation | [1] Visek WJ. Arginine needs, physiological state and usual diets. A reevaluation. J Nutr 1986;116:36-46.
[2] Rose WC, Haines WJ, Warner DT. The amino acid requirements of man. V. The role of lysine, arginine, and tryptophan. J Biol Chem 1954;206:421-30. [3] Flynn NE, Meininger CJ, Haynes TE, Wu G. The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 2002;56:427-38. [4] Barbul A. Arginine: biochemistry, physiology, and therapeutic implications. JPEN J Parenter Enteral Nutr 1986;10:227-38. [5] Brosnan ME, Brosnan JT. Renal arginine metabolism. J Nutr 2004;134:2791S-5S; discussion 6S-7S. [6] Nieves C, Jr., Langkamp-Henken B. Arginine and immunity: a unique perspective. Biomed Pharmacother 2002;56:471-82. [7] Seiler N, Delcros JG, Moulinoux JP. Polyamine transport in mammalian cells. An update. Int J Biochem Cell Biol 1996;28:843-61. [8] Bettuzzi S, Davalli P, Astancolle S, Pinna C, Roncaglia R, Boraldi F, et al. Coordinate changes of polyamine metabolism regulatory proteins during the cell cycle of normal human dermal fibroblasts. FEBS Lett 1999;446:18-22. [9] Thomas T, Thomas TJ. Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 2001;58:244-58. [10] Li L, Rao JN, Guo X, Liu L, Santora R, Bass BL, et al. Polyamine depletion stabilizes p53 resulting in inhibition of normal intestinal epithelial cell proliferation. Am J Physiol Cell Physiol 2001;281:C941-53. [11] Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J 1994;298 ( Pt 2):249-58. [12] Knowles RG. Nitric oxide synthases. Biochem Soc Trans 1996;24:875-8. [13] Vakkala M, Kahlos K, Lakari E, Paakko P, Kinnula V, Soini Y. Inducible nitric oxide synthase expression, apoptosis, and angiogenesis in in situ and invasive breast carcinomas. Clin Cancer Res 2000;6:2408-16. [14] Marrogi AJ, Travis WD, Welsh JA, Khan MA, Rahim H, Tazelaar H, et al. Nitric oxide synthase, cyclooxygenase 2, and vascular endothelial growth factor in the angiogenesis of non-small cell lung carcinoma. Clin Cancer Res 2000;6:4739-44. [15] Aaltoma SH, Lipponen PK, Kosma VM. Inducible nitric oxide synthase (iNOS) expression and its prognostic value in prostate cancer. Anticancer Res 2001;21:3101-6. [16] Hayashi H, Kuwahara M, Fujisaki N, Furihata M, Ohtsuki Y, Kagawa S. Immunohistochemical findings of nitric oxide synthase expression in urothelial transitional cell carcinoma including dysplasia. Oncol Rep 2001;8:1275-9. [17] Crowell JA, Steele VE, Sigman CC, Fay JR. Is inducible nitric oxide synthase a target for chemoprevention? Mol Cancer Ther 2003;2:815-23. [18] Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109-42. [19] Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol 2005;15:277-89. [20] Eagle H. Nutrition needs of mammalian cells in tissue culture. Science 1955;122:501-14. [21] Eagle H. Amino acid metabolism in mammalian cell cultures. Science 1959;130:432-7. [22] Weissfeld AS, Rouse H. Arginine deprivation in KB cells. I. Effect on cell cycle progress. J Cell Biol 1977;75:881-8. [23] Weissfeld AS, Rouse H. Continued initiation of DNA synthesis in arginine-deprived Chinese hamster ovary cells. J Cell Biol 1977;73:200-5. [24] Weissfeld AS, Rouse H. Arginine deprivation in KB cells. II. Characterization of the DNA synthesized during starvation. J Cell Biol 1977;75:889-98. [25] Scott L, Lamb J, Smith S, Wheatley DN. Single amino acid (arginine) deprivation: rapid and selective death of cultured transformed and malignant cells. Br J Cancer 2000;83:800-10. [26] Lamb J, Wheatley DN. Single amino acid (arginine) deprivation induces G1 arrest associated with inhibition of cdk4 expression in cultured human diploid fibroblasts. Exp Cell Res 2000;255:238-49. [27] Wheatley DN, Scott L, Lamb J, Smith S. Single amino acid (arginine) restriction: growth and death of cultured HeLa and human diploid fibroblasts. Cell Physiol Biochem 2000;10:37-55. [28] Wheatley DN, Kilfeather R, Stitt A, Campbell E. Integrity and stability of the citrulline-arginine pathway in normal and tumour cell lines. Cancer Lett 2005;227:141-52. [29] Wheatley DN, Campbell E. Arginine deprivation, growth inhibition and tumour cell death: 3. Deficient utilisation of citrulline by malignant cells. Br J Cancer 2003;89:573-6. [30] Altucci P, Sapio V, Vitale P, de Vargas F. [Mycoplasma in human pathology. Current status of the problem, with special reference to respiratory pathology]. Recenti Prog Med 1966;41:409-55. [31] Shibatani T, Kakimoto T, Chibata I. Crystallization and properties of L-arginine deiminase of Pseudomonas putida. J Biol Chem 1975;250:4580-3. [32] Burne RA, Parsons DT, Marquis RE. Cloning and expression in Escherichia coli of the genes of the arginine deiminase system of Streptococcus sanguis NCTC 10904. Infect Immun 1989;57:3540-8. [33] Simon JP, Wargnies B, Stalon V. Control of enzyme synthesis in the arginine deiminase pathway of Streptococcus faecalis. J Bacteriol 1982;150:1085-90. [34] Baur H, Luethi E, Stalon V, Mercenier A, Haas D. Sequence analysis and expression of the arginine-deiminase and carbamate-kinase genes of Pseudomonas aeruginosa. Eur J Biochem 1989;179:53-60. [35] Fenske JD, Kenny GE. Role of arginine deiminase in growth of Mycoplasma hominis. J Bacteriol 1976;126:501-10. [36] Misawa S, Aoshima M, Takaku H, Matsumoto M, Hayashi H. High-level expression of Mycoplasma arginine deiminase in Escherichia coli and its efficient renaturation as an anti-tumor enzyme. J Biotechnol 1994;36:145-55. [37] Takaku H, Matsumoto M, Misawa S, Miyazaki K. Anti-tumor activity of arginine deiminase from Mycoplasma argini and its growth-inhibitory mechanism. Jpn J Cancer Res 1995;86:840-6. [38] Miyazaki K, Takaku H, Umeda M, Fujita T, Huang WD, Kimura T, et al. Potent growth inhibition of human tumor cells in culture by arginine deiminase purified from a culture medium of a Mycoplasma-infected cell line. Cancer Res 1990;50:4522-7. [39] Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA. Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res 2002;62:5443-50. [40] Beloussow K, Wang L, Wu J, Ann D, Shen WC. Recombinant arginine deiminase as a potential anti-angiogenic agent. Cancer Lett 2002;183:155-62. [41] Park IS, Kang SW, Shin YJ, Chae KY, Park MO, Kim MY, et al. Arginine deiminase: a potential inhibitor of angiogenesis and tumour growth. Br J Cancer 2003;89:907-14. [42] Gong H, Zolzer F, von Recklinghausen G, Rossler J, Breit S, Havers W, et al. Arginine deiminase inhibits cell proliferation by arresting cell cycle and inducing apoptosis. Biochem Biophys Res Commun 1999;261:10-4. [43] Takaku H, Takase M, Abe S, Hayashi H, Miyazaki K. In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. Int J Cancer 1992;51:244-9. [44] Curley SA, Bomalaski JS, Ensor CM, Holtsberg FW, Clark MA. Regression of hepatocellular cancer in a patient treated with arginine deiminase. Hepatogastroenterology 2003;50:1214-6. [45] Izzo F, Marra P, Beneduce G, Castello G, Vallone P, De Rosa V, et al. Pegylated arginine deiminase treatment of patients with unresectable hepatocellular carcinoma: results from phase I/II studies. J Clin Oncol 2004;22:1815-22. [46] Ascierto PA, Scala S, Castello G, Daponte A, Simeone E, Ottaiano A, et al. Pegylated arginine deiminase treatment of patients with metastatic melanoma: results from phase I and II studies. J Clin Oncol 2005;23:7660-8. [47] Pegg AE. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res 1988;48:759-74. [48] Gonzalez GG, Byus CV. Effect of dietary arginine restriction upon ornithine and polyamine metabolism during two-stage epidermal carcinogenesis in the mouse. Cancer Res 1991;51:2932-9. [49] Shen LJ, Beloussow K, Shen WC. Modulation of arginine metabolic pathways as the potential anti-tumor mechanism of recombinant arginine deiminase. Cancer Lett 2006;231:30-5. [50] Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182-6. [51] Li H, Meininger CJ, Hawker JR, Jr., Haynes TE, Kepka-Lenhart D, Mistry SK, et al. Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am J Physiol Endocrinol Metab 2001;280:E75-82. [52] Gong H, Zolzer F, von Recklinghausen G, Havers W, Schweigerer L. Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis. Leukemia 2000;14:826-9. [53] Sugimura K, Ohno T, Kusuyama T, Azuma I. High sensitivity of human melanoma cell lines to the growth inhibitory activity of mycoplasmal arginine deiminase in vitro. Melanoma Res 1992;2:191-6. [54] Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, Bomalaski JS, et al. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation. Cancer 2004;100:826-33. [55] Shen LJ, Lin WC, Beloussow K, Shen WC. Resistance to the anti-proliferative activity of recombinant arginine deiminase in cell culture correlates with the endogenous enzyme, argininosuccinate synthetase. Cancer Lett 2003;191:165-70. [56] Hattori Y, Campbell EB, Gross SS. Argininosuccinate synthetase mRNA and activity are induced by immunostimulants in vascular smooth muscle. Role in the regeneration or arginine for nitric oxide synthesis. J Biol Chem 1994;269:9405-8. [57] Napoli C, Lemieux C, Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 1990;2:279-89. [58] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11. [59] Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 1999;286:950-2. [60] Kennerdell JR, Carthew RW. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 1998;95:1017-26. [61] Svoboda P, Stein P, Hayashi H, Schultz RM. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 2000;127:4147-56. [62] Bernstein E, Denli AM, Hannon GJ. The rest is silence. Rna 2001;7:1509-21. [63] Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000;101:25-33. [64] Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001;15:188-200. [65] Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J 2001;20:6877-88. [66] Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001;409:363-6. [67] Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494-8. [68] Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A 2001;98:9742-7. [69] Kao SC, Krichevsky AM, Kosik KS, Tsai LH. BACE1 suppression by RNA interference in primary cortical neurons. J Biol Chem 2004;279:1942-9. [70] Krick S, Eul BG, Hanze J, Savai R, Grimminger F, Seeger W, et al. Role of hypoxia-inducible factor-1alpha in hypoxia-induced apoptosis of primary alveolar epithelial type II cells. Am J Respir Cell Mol Biol 2005;32:395-403. [71] Ikeda R, Yoshida K, Tsukahara S, Sakamoto Y, Tanaka H, Furukawa K, et al. The promyelotic leukemia zinc finger promotes osteoblastic differentiation of human mesenchymal stem cells as an upstream regulator of CBFA1. J Biol Chem 2005;280:8523-30. [72] Hoelters J, Ciccarella M, Drechsel M, Geissler C, Gulkan H, Bocker W, et al. Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells. J Gene Med 2005;7:718-28. [73] Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002;2:243-7. [74] Martinez LA, Naguibneva I, Lehrmann H, Vervisch A, Tchenio T, Lozano G, et al. Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc Natl Acad Sci U S A 2002;99:14849-54. [75] Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 2003;101:1566-9. [76] Lage H. Potential applications of RNA interference technology in the treatment of cancer. Future Oncol 2005;1:103-13. [77] Leung RK, Whittaker PA. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 2005;107:222-39. [78] RNA-interference therapy for HBV infection enters Phase I clinical trial. Expert Rev Anti Infect Ther 2008;6:5-8. [79] Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 1986;89:271-7. [80] Yoon CY, Shim YJ, Kim EH, Lee JH, Won NH, Kim JH, et al. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase. Int J Cancer 2007;120:897-905. [81] Caso G, McNurlan MA, McMillan ND, Eremin O, Garlick PJ. Tumour cell growth in culture: dependence on arginine. Clin Sci (Lond) 2004;107:371-9. [82] Morris SM, Jr. Enzymes of arginine metabolism. J Nutr 2004;134:2743S-7S; discussion 65S-67S. [83] Komada Y, Zhang XL, Zhou YW, Ido M, Azuma E. Apoptotic cell death of human T lymphoblastoid cells induced by arginine deiminase. Int J Hematol 1997;65:129-41. [84] Lenaerts K, Renes J, Bouwman FG, Noben JP, Robben J, Smit E, et al. Arginine deficiency in preconfluent intestinal Caco-2 cells modulates expression of proteins involved in proliferation, apoptosis, and heat shock response. Proteomics 2007;7:565-77. [85] Cheung WL, Ajiro K, Samejima K, Kloc M, Cheung P, Mizzen CA, et al. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 2003;113:507-17. [86] Noh EJ, Kang SW, Shin YJ, Choi SH, Kim CG, Park IS, et al. Arginine deiminase enhances dexamethasone-induced cytotoxicity in human T-lymphoblastic leukemia CCRF-CEM cells. Int J Cancer 2004;112:502-8. [87] Hipfner DR, Cohen SM. Connecting proliferation and apoptosis in development and disease. Nat Rev Mol Cell Biol 2004;5:805-15. [88] Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 2003;31:2705-16. [89] Amarzguioui M, Holen T, Babaie E, Prydz H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 2003;31:589-95. [90] McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA. RNA interference in adult mice. Nature 2002;418:38-9. [91] Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 2002;32:107-8. [92] Goodwin BL, Solomonson LP, Eichler DC. Argininosuccinate synthase expression is required to maintain nitric oxide production and cell viability in aortic endothelial cells. J Biol Chem 2004;279:18353-60. [93] Shen LJ, Beloussow K, Shen WC. Accessibility of endothelial and inducible nitric oxide synthase to the intracellular citrulline-arginine regeneration pathway. Biochem Pharmacol 2005;69:97-104. [94] Keilhoff G, Reiser M, Stanarius A, Aoki E, Wolf G. Citrulline immunohistochemistry for demonstration of NOS activity in vivo and in vitro. Nitric Oxide 2000;4:343-53. [95] Flam BR, Eichler DC, Solomonson LP. Endothelial nitric oxide production is tightly coupled to the citrulline-NO cycle. Nitric Oxide 2007;17:115-21. [96] Rutz S, Scheffold A. Towards in vivo application of RNA interference - new toys, old problems. Arthritis Res Ther 2004;6:78-85. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37346 | - |
| dc.description.abstract | 精胺酸(L-arginine)除了為蛋白質合成所需的胺基酸之外,同時它也可以藉由不同的酵素轉換成其他的胺基酸。另外,精胺酸代謝後也會產生許多與調節細胞生化功能有關的非蛋白質化合物,如聚胺、一氧化氮等。基因合成精胺酸去亞胺酶(recombinant arginine deiminase,rADI)由體外細胞實驗證實,當用於對精胺酸缺乏不具耐受性的惡性腫瘤細胞是具有抑制其生長的效果,因為它會將環境中的L-arginine降解變成瓜胺酸(L-citrulline),使細胞得不到養分而無法繼續生長;而且在體內動物實驗已經證明它具有抗腫瘤的活性。目前,rADI也已經進入臨床試驗,分別用於無法切除肝腫瘤的病人以及轉移性黑色素瘤的病人。然而,並非所有的惡性腫瘤細胞均對rADI具敏感性。造成某些癌細胞株對rADI具有抗藥性的原因是來自細胞內的一個內生性蛋白質,精胺酸琥珀酸合成酶(argininosuccinate synthetase,AS),當rADI將L-arginine降解成L-citrulline後,L-citrulline可以藉由AS再轉變回L-arginine供細胞正常使用。因為將L-citrulline轉變成L-arginine的速率決定步驟酵素為AS,於是在本研究中,我們想要利用核糖核酸干擾(RNA interference,RNAi)的策略來干擾AS基因的表現量,再併用rADI之後,觀察是否能使具有抗藥性的癌細胞株對於rADI的治療敏感度提高。
在本研究中我們使用MCF-7(人類乳癌細胞株)及HeLa(人類子宮頸癌細胞株)當做體外實驗的模式,因為它們均為對rADI不具有敏感性的癌細胞株。我們將設計好且對AS具有專一性的21個核苷酸小片段干擾核糖核酸(AS small interference RNA,AS-siRNA)及隨機排序的小片段干擾核糖核酸(NC-siRNA)以LipofectamineTM 2000轉染進入細胞內。接著,利用此體外實驗模式把AS-siRNA / NC-siRNA轉染進入細胞內,再併用rADI,將細胞培養24-96小時後,分別以MTT assay及流式細胞儀分析細胞的存活率及細胞週期分佈情形。另外再以含有10%透析過FBS的L-arginine缺乏培養基培養MCF-7細胞1-7天後,以MTT assay測定其細胞存活率。 結果顯示,我們所設計的AS-siRNA對於AS基因具有顯著的抑制效果。當MCF-7及HeLa細胞分別給予AS-siRNA培養四天後,其AS蛋白質的表現量分別是對照組的37.8±7.3% 及0.2±0.3%。即時定量聚合酶連鎖反應的結果顯示,當給予MCF-7及HeLa細胞AS-siRNA / NC-siRNA培養四天之後,其AS訊息核糖核酸的表現量分別是對照組的22.3±2.9% 及49.3±5.2%。以AS-siRNA併用rADI給予MCF-7及HeLa細胞分別培養24,48,72,96小時,對MCF-7細胞而言,其細胞存活率並無明顯的變化。相反地,對HeLa細胞而言,其細胞存活率分別是90.1±5.0%,64.9±0.4%,13.1±1.4%,7.7±0.2%。另外,我們以AS-siRNA併用rADI培養四天後,以流式細胞儀分析MCF-7及HeLa細胞的細胞週期分佈情形,其細胞凋亡的比例分別是8.1±3.4% 及63.4±4.7%。另外,以L-arginine缺乏的培養基培養MCF-7細胞,結果顯示MCF-7細胞並不會因為L-arginine的缺乏而影響其細胞存活率。 從我們的實驗結果可知,雖然AS-siRNA併用rADI均可以降低HeLa及MCF-7細胞株的AS蛋白質及訊息核糖核酸的表現量,但是,我們觀察到只有HeLa細胞株對於這樣的合併療法才具有敏感性,同時會使HeLa細胞株走向凋亡的途徑。另外,觀察到MCF-7細胞可以在L-arginine缺乏的培養基中存活及增殖,這可能意謂著L-arginine對於MCF-7細胞的生長並非必需的胺基酸。在我們的研究中,我們也觀察到HeLa及MCF-7細胞的內生性AS蛋白質表現量是截然不同的。對HeLa細胞而言,它們的內生性AS蛋白質表現量微弱,但是當給予rADI培養四天後,其AS蛋白質的表現量會被誘導增至為原來的5倍左右。對MCF-7細胞而言,當給予rADI培養四天後,其AS蛋白質的表現量只有少量的被誘導產生(約1.1倍)。因此,藉由核糖核酸干擾來降低AS基因的表現量或許可以當做治療某些對rADI具有抗藥性癌細胞株(如HeLa細胞株)的策略。未來,我們將更進一步的探討造成對這樣的合併療法具有抗藥性的癌細胞株(如MCF-7細胞株)之可能機轉。 | zh_TW |
| dc.description.abstract | L-arginine is not only one of the essential amino acids for protein synthesis, but also the substrate for the conversion of other amino acids, and several non-protein compounds relating to the biochemical functions of cells, such as polyamines and nitric oxide. It has been demonstrated that recombinant arginine deiminase (rADI), a protein starving arginine-auxotrophic malignant cells by the degradation of arginine to citrulline in vitro and in vivo as well, has anti-tumoral activity. rADI is currently in clinical trials, used in patients with unresectable hepatocellular carcinoma and metastatic melanoma. However, not all malignant cells are sensitive to rADI. Endogenous argininosuccinate synthetase (AS), a rate-limiting enzyme in the arginine regeneration from citrulline, has been reported playing a crucial role in the resistance of malignant cells to rADI. Therefore, we would like to use RNA interference (RNAi) to down-regulate the expression level of AS gene and it combines with rADI to increase the sensitivity of resistant cells to rADI-treatment.
Human breast cancer cell line MCF-7 and cervical cancer cell line HeLa, both of the resistant cancer cell lines to rADI-treatment, were used in our experiments. Firstly, the 21-nucleotide sequences of small interference RNA (siRNA) of AS gene and negative control (NC) were designed. MCF-7 and HeLa cells were transfected AS-siRNA and NC-siRNA, respectively, with lipofectamineTM 2000. Subsequently, cells were transfected AS-siRNA / NC-siRNA with lipofectamineTM 2000 and treated with rADI concurrently in this in vitro model. After 24-96 hours treatment, the cell viability and cell cycle distribution were analyzed by MTT assay and flow cytometry. Additionally, MCF-7 cells were incubated in L-arginine-free medium with 10% dialyzed FBS for 1-7 days to measure their cell viability by using MTT assay. The designed AS-siRNA significantly down-regulated AS gene in mRNA and protein levels in both cell lines, but not NC-siRNA. Four days after the treatment of AS-siRNA and NC-siRNA, the AS protein expression level in MCF-7 and HeLa cells were 37.8±7.2% and 0.2±0.3%, respectively, compared to each control group by Western blotting. We also measured the AS mRNA expression level in MCF-7 and HeLa cells after the treatment of AS-siRNA and NC-siRNA at day 4, they were 22.3±2.9% and 49.3±5.2%, respectively, compared to each control group. After 24-96 hours treatment of the combination of AS-siRNA and rADI in MCF-7, the cell viability was not significantly affected by MTT assay. On the contrary, the percentage of cell viability in HeLa were 90.1±5.0%, 64.9±0.4%, 13.1±1.4%, and 7.7±0.2%, respectively, after 24, 48, 72, 96 hr treatment of the combination. Four days after the combination of AS-siRNA and rADI, the percentage of apoptosis in MCF-7 and HeLa cells were 8.1±3.4% and 63.4±4.7%, respectively, by the flow cytometry. In addition, when MCF-7 cells were cultured in L-arginine-free medium, the cell viability was not affected by the absence of L-arginine. From our results, although the combination of AS-siRNA and rADI decreased the AS protein expression and AS mRNA level in both HeLa and MCF-7 cell lines, only HeLa cells were sensitive to the combination treatment via the apoptotic pathway. In addition, the MCF-7 can survive and proliferate in the L-arginine depletion medium. It may indicate the L-arginine is not the essential amino acid for MCF-7 cells. In our study, it is known that the endogenous AS protein expression level are different between HeLa cells and MCF-7 cells. For HeLa cells, their endogenous AS protein expression level is low, but it is induced to 5 fold of the AS expression in the control group after 4 days treatment of rADI. For MCF-7 cells, the induction of AS protein expression level is only minimal (1.1 fold) of it in the control after 4 days treatment of rADI. Therefore, down-regulation of AS gene by RNAi could be a strategy to overcome the resistance of rADI in some malignant cells, such as HeLa cells. However, it may need further studies to understand the mechanism of the resistance of the combination treatment of AS-siRNA and rADI in other cells, such as MCF-7 cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:25:06Z (GMT). No. of bitstreams: 1 ntu-97-R94423023-1.pdf: 760569 bytes, checksum: 815409eac7b3bb411c19c91a10838825 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 縮寫表 I
Abstract III 中文摘要 VI 第一章 緒論 1 1.1 精胺酸(L-arginine)在體內扮演的重要角色 1 1.2 精胺酸缺乏(arginine deprivation)對細胞的影響 2 1.2.1 不依賴L-arginine(L-arginine-independent)的細胞 3 1.2.2 依賴L-arginine(L-arginine-dependent)的細胞 4 1.2.2.1 L-arginine與L-arginine-dependent細胞 4 1.2.2.2 L-citrulline與arginine-dependent細胞 5 1.3 精胺酸去亞胺酶(arginine deiminase,ADI) 5 1.3.1 ADI具有抗腫瘤細胞的活性 6 1.3.2 精胺酸琥珀酸合成酶(argininosuccinate synthetase,AS)與rADI之抗藥性...........................................................................................................................8 1.4 核糖核酸干擾(RNA interference,RNAi) 9 1.4.1 何謂RNAi 9 1.4.2 RNAi於疾病治療上的應用 10 第二章 實驗目的 12 第三章 實驗材料 13 3.1 細胞培養 13 3.2 rADI activity assay 13 3.3 蛋白質濃度測定(Micro BCATM Protein assay kit) 13 3.4 硫酸十二酯鈉聚丙醯胺凝膠電泳法(Sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE) 14 3.5 將AS-siRNA轉染(Transfection)進入細胞 14 3.6 反轉錄聚合酶鏈鎖反應(reverse transcription polymerase chain reaction analysis,RT-PCR analysis) 14 3.7 即時定量聚合酶鏈鎖反應(real-time polymerase chain reaction,real-time PCR) 15 3.8 西方墨點轉漬法(Western blotting) 15 3.9 MTT分析法(MTT assay) 16 3.10 其他 16 第四章 實驗方法 19 4.1 細胞培養 19 4.2 細胞計數 19 4.3 細胞生長抑制測定法(MTT assay) 20 4.4 細胞轉染(Transfection) 20 4.5 核糖核酸萃取與定量 21 4.5.1 洋菜糖膠電泳分析(Agarose gel assay) 21 4.6 反轉錄聚合酶鏈鎖反應 22 4.7 即時定量聚合酶鏈鎖反應 22 4.8 蛋白質萃取與定量 22 4.9 西方墨點轉漬法(Western blotting) 23 4.9.1 硫酸十二酯鈉聚丙醯胺凝膠電泳法(sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE) 23 4.9.2 以Coomassie Brilliant Blue浸染膠片 24 4.9.3 蛋白質轉漬(transfer) 25 4.9.4 Blocking 25 4.9.5 免疫顯色 26 4.10 流式細胞儀(FACScan flow cytometry) 26 4.11 統計分析 27 第五章 實驗結果 28 5.1 rADI對細胞的影響 28 5.1.1 生長的影響 28 5.1.2 rADI對於AS蛋白質表現量的影響 28 5.2 AS小片段干擾核糖核酸(AS-siRNA)併用rADI對細胞的影響 29 5.2.1 AS-siRNA的專一性評估 29 5.2.2 細胞存活的影響 29 5.2.3 AS訊息核糖核酸(mRNA)表現量的影響 30 5.2.4 對細胞週期的影響 30 5.3 L-arginine缺乏的培養基(L-arginine-free medium)對MCF-7細胞生長的影響 31 第六章 討論 32 6.1 rADI對MCF-7,HeLa及A375三種細胞株的細胞毒性 32 6.2 對rADI具有抗性的原因可能來自於AS蛋白質表現量的差異 32 6.3 AS-siRNA併用rADI用於對rADI有抵抗性的癌細胞株 34 6.4 AS-siRNA併用rADI可誘導細胞走向凋亡 36 6.5 AS-siRNA併用rADI治療對rADI具有抗性的癌細胞,未來應用於臨床上的可行性 39 6.6 本研究之實驗限制 40 第七章 結論 42 圖表 43 參考文獻 62 | |
| dc.language.iso | zh-TW | |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | 基因合成精胺酸去亞胺酶 | zh_TW |
| dc.subject | 精胺酸 | zh_TW |
| dc.subject | 瓜胺酸 | zh_TW |
| dc.subject | 精胺酸琥珀酸合成酶 | zh_TW |
| dc.subject | 核糖核酸干擾 | zh_TW |
| dc.subject | 小片段干擾核糖核酸 | zh_TW |
| dc.subject | 抗藥性 | zh_TW |
| dc.subject | small interference RNA (siRNA) | en |
| dc.subject | apoptosis | en |
| dc.subject | resistance | en |
| dc.subject | recombinant arginine deiminase (rADI) | en |
| dc.subject | L-arginine | en |
| dc.subject | L-citrulline | en |
| dc.subject | argininosuccinate synthetase (AS) | en |
| dc.subject | RNA interference (RNAi) | en |
| dc.title | 干擾精胺酸琥珀酸合成酶之核糖核酸對於基因合成精胺酸去亞胺酶具抗藥性癌細胞株之作用 | zh_TW |
| dc.title | Effect of RNAi of argininosuccinate synthetase on recombinant arginine deiminase (rADI)-resistant cancer cell lines | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊家榮(Chia-Ron Yang),孔繁璐(Fan-Lu Kung) | |
| dc.subject.keyword | 基因合成精胺酸去亞胺酶,精胺酸,瓜胺酸,精胺酸琥珀酸合成酶,核糖核酸干擾,小片段干擾核糖核酸,抗藥性,細胞凋亡, | zh_TW |
| dc.subject.keyword | recombinant arginine deiminase (rADI),L-arginine,L-citrulline,argininosuccinate synthetase (AS),RNA interference (RNAi),small interference RNA (siRNA),resistance,apoptosis, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-21 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 742.74 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
