請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37324完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳秀熙 | |
| dc.contributor.author | Chan-Ping Su | en |
| dc.contributor.author | 蘇展平 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:24:27Z | - |
| dc.date.available | 2008-08-14 | |
| dc.date.copyright | 2008-08-14 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-21 | |
| dc.identifier.citation | 1. Leibovici L, Samra Z, Konigsberger H, Drucker M, Ashkenazi S, Pitlik SD. Long-term survival following bacteremia or fungemia. JAMA 1995;274:807-12.
2. McGregor J, Rich S, Harris A, et al. A Systematic Review of the Methods Used to Assess the Association between Appropriate Antibiotic Therapy and Mortality in Bacteremic Patients. Clinical Infectious Diseases 2007;45:329-37. 3. McCaig LF, McDonald LC, Cohen AL, Kuehnert MJ. Increasing blood culture use at US hospital emergency department visits, 2001 to 2004. Ann Emerg Med 2007;50:42-8, 8 e1-2. 4. Aronson MD, Bor DH. Blood cultures. Ann Intern Med 1987;106:246-53. 5. Stalnikowicz R, Block C. The yield of blood cultures in a department of emergency medicine. Eur J Emerg Med 2001;8:93-7. 6. Bearman GM, Wenzel RP. Bacteremias: a leading cause of death. Arch Med Res 2005;36:646-59. 7. Elhanan G, Raz R, Pitlik SD, et al. Bacteraemia in a community and a university hospital. J Antimicrob Chemother 1995;36:681-95. 8. Bates DW, Pruess KE, Lee TH. How bad are bacteremia and sepsis? Outcomes in a cohort with suspected bacteremia. Arch Intern Med 1995;155:593-8. 9. Pirson M, Dramaix M, Struelens M, Riley TV, Leclercq P. Costs associated with hospital-acquired bacteraemia in a Belgian hospital. J Hosp Infect 2005;59:33-40. 10. Mellors JW, Horwitz RI, Harvey MR, Horwitz SM. A simple index to identify occult bacterial infection in adults with acute unexplained fever. Arch Intern Med 1987;147:666-71. 11. Leibovici L, Cohen O, Wysenbeek AJ. Occult bacterial infection in adults with unexplained fever. Validation of a diagnostic index. Arch Intern Med 1990;150:1270-2. 12. Scheckler WE, Bobula JA, Beamsley MB, Hadden ST. Bloodstream infections in a community hospital: a 25-year follow-up. Infect Control Hosp Epidemiol 2003;24:936-41. 13. Jaimes F, Arango C, Ruiz G, et al. Predicting bacteremia at the bedside. Clin Infect Dis 2004;38:357-62. 14. Leibovici L, Greenshtain S, Cohen O, Mor F, Wysenbeek AJ. Bacteremia in febrile patients. A clinical model for diagnosis. Arch Intern Med 1991;151:1801-6. 15. Bates DW, Cook EF, Goldman L, Lee TH. Predicting bacteremia in hospitalized patients. A prospectively validated model. Ann Intern Med 1990;113:495-500. 16. Pfitzenmeyer P, Decrey H, Auckenthaler R, Michel JP. Predicting bacteremia in older patients. J Am Geriatr Soc 1995;43:230-5. 17. Leibovici L. Predicting bacteremia. Ann Intern Med 1991;114:703. 18. Tokuda Y, Miyasato H, Stein GH. A simple prediction algorithm for bacteraemia in patients with acute febrile illness. QJM 2005;98:813-20. 19. Van Dissel JT, Numan SC, Van't Wout JW. Chills in 'early sepsis': good for you? J Intern Med 2005;257:469-72. 20. Peduzzi P, Shatney C, Sheagren J, Sprung C. Predictors of bacteremia and gram-negative bacteremia in patients with sepsis. The Veterans Affairs Systemic Sepsis Cooperative Study Group. Arch Intern Med 1992;152:529-35. 21. Fontanarosa PB, Kaeberlein FJ, Gerson LW, Thomson RB. Difficulty in predicting bacteremia in elderly emergency patients. Ann Emerg Med 1992;21:842-8. 22. Epstein D, Raveh D, Schlesinger Y, Rudensky B, Gottehrer NP, Yinnon AM. Adult patients with occult bacteremia discharged from the emergency department: epidemiological and clinical characteristics. Clin Infect Dis 2001;32:559-65. 23. Ramos JM, Masia M, Elia M, et al. Epidemiological and clinical characteristics of occult bacteremia in an adult emergency department in Spain: influence of blood culture results on changes in initial diagnosis and empiric antibiotic treatment. Eur J Clin Microbiol Infect Dis 2004;23:881-7. 24. Bates DW, Sands K, Miller E, et al. Predicting bacteremia in patients with sepsis syndrome. Academic Medical Center Consortium Sepsis Project Working Group. J Infect Dis 1997;176:1538-51. 25. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 1992;20:864-74. 26. Paul M, Andreassen S, Nielsen AD, et al. Prediction of bacteremia using TREAT, a computerized decision-support system. Clin Infect Dis 2006;42:1274-82. 27. Schneider HG, Lam QT. Procalcitonin for the clinical laboratory: a review. Pathology 2007;39:383-90. 28. Assicot M, Gendrel D, Carsin H, Raymond J, Guilbaud J, Bohuon C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993;341:515-8. 29. Dandona P, Nix D, Wilson MF, et al. Procalcitonin increase after endotoxin injection in normal subjects. J Clin Endocrinol Metab 1994;79:1605-8. 30. Jones AE, Fiechtl JF, Brown MD, Ballew JJ, Kline JA. Procalcitonin test in the diagnosis of bacteremia: a meta-analysis. Ann Emerg Med 2007;50:34-41. 31. Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis 2004;39:206-17. 32. Schuetz P, Christ-Crain M, Wolbers M, et al. Procalcitonin guided antibiotic therapy and hospitalization in patients with lower respiratory tract infections: a prospective, multicenter, randomized controlled trial. BMC Health Serv Res 2007;7:102. 33. Wasson JH, Sox HC, Neff RK, Goldman L. Clinical prediction rules. Applications and methodological standards. N Engl J Med 1985;313:793-9. 34. Laupacis A, Sekar N, Stiell IG. Clinical prediction rules. A review and suggested modifications of methodological standards. JAMA 1997;277:488-94. 35. Mylotte JM, Pisano MA, Ram S, Nakasato S, Rotella D. Validation of a bacteremia prediction model. Infect Control Hosp Epidemiol 1995;16:203-9. 36. Yehezkelli Y, Subah S, Elhanan G, et al. Two rules for early prediction of bacteremia: testing in a university and a community hospital. J Gen Intern Med 1996;11:98-103. 37. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control 1988;16:128-40. 38. MacGregor RR, Beaty HN. Evaluation of positive blood cultures. Guidelines for early differentiation of contaminated from valid positive cultures. Arch Intern Med 1972;130:84-7. 39. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143:29-36. 40. Sullivan LM, Massaro JM, D'Agostino RB, Sr. Presentation of multivariate data for clinical use: The Framingham Study risk score functions. Stat Med 2004;23:1631-60. 41. Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983;148:839-43. 42. Leibovici L, Paul M. Benefit associated with appropriate antibiotic treatment. Clin Infect Dis 2007;45:1400; author reply 1-2. 43. Shih FY, Ma MH, Chen SC, et al. ED overcrowding in Taiwan: facts and strategies. Am J Emerg Med 1999;17:198-202. 44. Miro O, Antonio MT, Jimenez S, et al. Decreased health care quality associated with emergency department overcrowding. Eur J Emerg Med 1999;6:105-7. 45. Almdal T, Skinhoj P, Friis H. Bacteremia in patients suffering from cirrhosis. Infection 1986;14:68-70. 46. Kuo CH, Changchien CS, Yang CY, Sheen IS, Liaw YF. Bacteremia in patients with cirrhosis of the liver. Liver 1991;11:334-9. 47. Thulstrup AM, Sorensen HT, Schonheyder HC, Moller JK, Tage-Jensen U. Population-based study of the risk and short-term prognosis for bacteremia in patients with liver cirrhosis. Clin Infect Dis 2000;31:1357-61. 48. Muckart DJ, Bhagwanjee S. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference definitions of the systemic inflammatory response syndrome and allied disorders in relation to critically injured patients. Crit Care Med 1997;25:1789-95. 49. Ridker PM, Bassuk SS, Toth PP. C-reactive protein and risk of cardiovascular disease: evidence and clinical application. Curr Atheroscler Rep 2003;5:341-9. 50. Campbell SG, Marrie TJ, Anstey R, Ackroyd-Stolarz S, Dickinson G. Utility of blood cultures in the management of adults with community acquired pneumonia discharged from the emergency department. Emerg Med J 2003;20:521-3. 51. Corbo J, Friedman B, Bijur P, Gallagher EJ. Limited usefulness of initial blood cultures in community acquired pneumonia. Emerg Med J 2004;21:446-8. 52. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44 Suppl 2:S27-72. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37324 | - |
| dc.description.abstract | 前言:菌血症是急診最嚴重的感染症之一。在沒有給予或使用不適當之經驗性抗生素治療的情況下,可能導致菌血症病患有較差的預後。因此,如何及時辨識出菌血症之可能病患,對於急診醫師來說是一個極大的挑戰。得到血液培養的結果通常需要一兩天的時間,因此急診醫師需要一個可依賴的預測工具,以幫助他們減少不必要的血液培養,並及早偵測到菌血症之高危險病患,以避免菌血症帶來的可能後果。雖然過去已有許多關於菌血症預測模式的研究,但仍未有臨床預測模式使用新的預測工具-降鈣素原。
目的:本研究之研究目標在建構一個使用降鈣素原的菌血症臨床預測模式,幫助急診醫師及早辨識出菌血症高危險病患,以避免延遲使用適當之抗微生物治療,並期能減少急診不必要之血液培養。 材料與方法:自民國九十三年十月一日至十一月三十日期間,於台灣大學醫學院附設醫院急診醫學部前瞻性收集之急診病患族群作分析。於此研究期間,所有15歲以上急診成人病患,經由醫師判斷需施行血液培養者為收錄對象。排除15歲以下孩童、懷孕婦女、以及甲狀腺癌患者。收集之資料包含五大類:(1)病患背景資料;(2)易感因子:如先前疾病、侵襲性程序、及免疫抑制治療等;(3)臨床表現:如症狀、生命徵候等;(4)實驗室檢查結果;以及(5)急診醫師之初步診斷。主要結果為真性菌血症,其定義遵循美國疾病管制局(CDC)臨床指引及MacGregor及Beaty等人之研究。為盡量避免因為模式選擇的標準,而遺漏在其他有意義之因子存在下,可能失去統計差異之陰性干擾因子(negative confounding factors),吾人應用一個繁複之邏輯回歸 (logistic regression) 過程建立一預測模式。其後使用參考變項係數之整數化給分法(coefficient-based scoring method),將此臨床預測模式簡化為評分系統預測模式。 結果:共收錄558位病患,其中含84次的真性菌血症事件。經邏輯回歸求得之危險因子及其簡化後之預測模式給分分別為:(1)肝硬化:勝算比0.255(95%信賴區間0.076至0.851),計-2分;(2)發燒>38.3℃:勝算比2.94(95%信賴區間1.537至5.625),計2分;(3)心跳>120下/分:勝算比3.113(95%信賴區間1.618至5.990),計2分;(4)淋巴球<0.5×103/μL:勝算比4.241(95%信賴區間2.144至8.391),計2分;(5)天門冬胺酸轉胺酶>40 IU/L:勝算比3.216(95% 信賴區間1.695至6.100),計2分;(6)C-反應蛋白(CRP)>10 mg/dL:勝算比1.722(95%信賴區間0.849至3.492),計1分;(7)降鈣素原(PCT)>0.5 ng/mL:勝算比3.837(95%信賴區間1.951至7.549),計2分;以及(8)急診醫師初步診斷為呼吸道感染:勝算比0.205(95% 信賴區間0.077至0.543),計-3分。Hosmer-Lemeshow測試之整體模式適配度卡方值為8.5813(P=0.3788),顯示本預測模式有良好之整體模式適配度。原始邏輯回歸模式與簡化後之計分模式之使用者操作特徵曲線圖曲線下面積分別為0.861(95%信賴區間0.825至0.892)及0.859(95%信賴區間0.823至0.890),兩條曲線相當接近。以1,000次連續隨機抽樣其中一半的資料做模式訓練、另一半作效度確認,交叉效度測試之使用者操作特徵曲線圖曲線下面積下降至0.664 (95%信賴區間0.593至0.734),其95%信賴區間下限仍在0.50以上。 結論:本研究以台灣本土急診病患為對象,找出菌血症所有相關之危險因子,並據此邏輯回歸預測模式發展出一個簡化之評分預測模式。此預測模式在本研究族群中效度良好,其外推性仍有待其他研究之驗證。 | zh_TW |
| dc.description.abstract | Background: Bloodstream infection or bacteremia is one of the most serious infectious diseases in emergency department (ED). Inappropriate or lacking of empirical antimicrobial therapy may be associated with a poorer outcome in bacteremic patients. How to identify patients with bacteremia timely becomes a great challenge for an emergency physician. A reliable predictive tool for bacteremia is needed to help emergency physicians in reducing the amount of unnecessary blood cultures, and in detecting high risk patients to avoid the sequale as a result of bacteremia. Despite numerous studies on predictive models for bacteremia, there was short of Procalcitonin-incorporated predictive model.
Objectives: The objectives of this study are therefore to build up a predictive model for the risk of bacteremia to aid emergency physicians in identifying the high-risk patients earlier in order to reduce the chance of delaying appropriate antimicrobial therapy, and in reducing the unnecessary blood cultures collected at ED. Material and Methods: We conducted a prospective cohort study at the ED of National Taiwan University Hospital (NTUH) from October 1, 2004 to November 30, 2004. All adult patients aged 15 years or older who had at least two sets of blood cultures collected during the study period were recruited. Factors affecting the risk for bacteremia included five categories: demographic characteristics; predisposing conditions such as underlying diseases, invasive procedures, immunosuppressive therapies; clinical presentations; laboratory tests; and presumptive diagnosis by emergency physicians. The primary outcome was true bacteremia adapted from definitions of the Centers for Disease Control and Prevention (CDC) and MacGregor and Beaty guidelines. To minimize all the possible negative confounding factors that are insignificant in the presence of other significant factors based on model selection criteria, we adopted an iterative procedure to build up a predictive model not to miss the possible negative confounding factors, and then simplified the clinical prediction rule into a coefficient-based scoring system. Results: We enrolled 558 patients with 84 episodes of true bacteremia. Predictors identified for bacteremia and their assigned scores were: (1) liver cirrhosis (adjusted odds ratio [aOR] 0.255; 95% confidence interval [CI] 0.076 to 0.851), -2 point; (2)fever>38.3℃ (aOR 2.94; 95% CI, 1.537 to 5.625), 2 point ; (3) tachycardia (aOR 3.113; 95% CI, 1.618 to 5.990), 2 point; (4) lymphocytopenia (aOR 4.241; 95% CI, 2.144 to 8.391), 2 points; (5) AST>40 IU/L (aOR 3.216; 95% CI, 1.695 to 6.100), 2 point; (6) C-reactive protein (CRP)>10 mg/dL (aOR 1.722; 95% CI, 0.849 to 3.492), 1 point; (7) procalcitonin (PCT)>0.5 ng/mL (aOR 3.837; 95% CI, 1.951to 7.549), 2 points; and (8) presumptive diagnosis of respiratory tract infections (aOR 0.205; 95% CI, 0.077 to 0.543), -3 points. The Hosmer-Lemeshow test revealed a goodness-of-fit of 8.5813 (P=0.3788). The areas under receiver operating characteristic curves (AUC) of original logistic model and the simplified scoring model were 0.861 (95% CI, 0.825 to 0.892) and 0.859 (95% CI, 0.823 to 0.890), respectively. Cross validation with 1,000 bootstraps of half cases for model training and another half for validation revealed a reduction of AUC to 0.664 (95% CI, 0.593 to 0.734). Conclusion: We developed a predictive model with scoring system for bacteremia at ED by application of the risk factors associated with bacteremia. However, its generalizabilty needs further corroboration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:24:27Z (GMT). No. of bitstreams: 1 ntu-97-R93846016-1.pdf: 933916 bytes, checksum: ae1d8f15b67a191d485d3a57fd8ca75d (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
口試記錄表 ii 中文摘要 iii ABSTRACT vi INTRODUCTION 1 Aims of this Study 1 LITERATURE REVIEW 2 Burden of Bacteremia 2 Risk Factors for Bacteremia 2 Predictive Models for Bacteremia 5 Procalcitonin 8 Development of a Prediction Rule 9 Rationales for Further Exploration 9 MATERIALS AND METHODS 10 Study Design and Settings 10 Patient Enrollment 10 Participants Interview and Follow-Up 10 Data Collection 11 Procalcitonin Assay 13 Outcome Measurements 13 Statistical Analysis 13 RESULTS 16 Enrollment and Descriptive Results 16 Formulation of Predictive Model 17 Univariate Analysis 17 Multi-variate Analysis 18 Model Validation 19 Coefficient-Based Scoring Model 20 Receiver Operating Characteristic (ROC) Curve 20 Clinical Cut-Off Point for Scoring Model 21 Performance Indices of the Scoring System 22 DISCUSSION 23 Major Contributions of this Study 23 Clinical Utility of the Predictive Model 23 Comparison with Previous Studies 24 Limitations 27 CONCLUSION 29 TABLES AND FIGURES 30 Table 1 Summary of Studies of Predictive Model for Bacteremia 30 Table 2 Univariate Logistic Regression Analyses 34 Table 3 Multi-variable Logistic Regression Analysis 37 Table 4 Parsimonious Multi-variate Logistic Regression Model 38 Table 5 Re-Certified Model for Negative Confounding Factors 38 Table 6 Testing All Insignificant Factors in the Final Parsimonious Model 39 Table 7 Final Model 40 Table 8 Interaction Assessment 41 Table 9 Final Model with Interaction Term 42 Table 10 Area under ROC Curves 43 Table 11 Pairwise Comparisons of ROC Curves 43 Table 12 Criterion Values and Coordinates of the ROC Curve 44 Table 13 Criterion values and coordinates of the ROC curve of Clinical Score 45 Table 14 Risk of Bacteremia in Different Scoring Levels 45 Table 15 Area under ROC Curves in Patients with Unexplained Fever 46 Table 16 Pairwise Comparisons of ROC Curves in Unexplained Fever 46 Figure 1 Flowchart of Patient Enrollment 47 Figure 2 ROC Curves of CRP, PCT, and Predictive Models 48 Figure 3 ROC Curves in Patients with Unexplained Fever 49 REFERENCES 50 APPENDIX 56 Appendix-A Case Recording Form 56 | |
| dc.language.iso | en | |
| dc.subject | 預測模式 | zh_TW |
| dc.subject | 菌血症 | zh_TW |
| dc.subject | 急診醫學 | zh_TW |
| dc.subject | 急診 | zh_TW |
| dc.subject | predictive model | en |
| dc.subject | bacteremia | en |
| dc.subject | emergency medicine | en |
| dc.subject | emergency departemnt | en |
| dc.title | 急診醫師決定血液培養之病患應用降鈣素原之菌血症預測模式 | zh_TW |
| dc.title | Predictive Model for Bacteremia with Emphasis on Procalcitonin in Patients with Physician-Based Blood Cultures at Emergency Department | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳文鍾,薛博仁,潘信良,嚴明芳 | |
| dc.subject.keyword | 急診醫學,急診,菌血症,預測模式, | zh_TW |
| dc.subject.keyword | emergency medicine,emergency departemnt,bacteremia,predictive model, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-22 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 912.03 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
