Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37308
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳朝峰
dc.contributor.authorSong-Ting Juangen
dc.contributor.author莊頌婷zh_TW
dc.date.accessioned2021-06-13T15:24:00Z-
dc.date.available2008-08-08
dc.date.copyright2008-08-08
dc.date.issued2008
dc.date.submitted2008-07-22
dc.identifier.citationAkil, H. & Watson, S. J. (1994). Cloning of kappa opioid receptors: functional significance and future directions. Prog Brain Res 100,81-86.
Bagnol, D., Mansour, A., Akil, H., & Watson, S. J. (1997). Cellular localization and distribution of the cloned mu and kappa opioid receptos in rat gastrointestinal tract. Neuroscience 81, 579-591.
Barajas, L. & Wang, P. (1978). Myelinated nerves of the rat kidney. A light and electron microscopic autoradiographic study. J Ultrastruct Res. 65: 148-162.
Barajas, L. & Wang, P. (1979). Localization of tritiated norepinephrine in the renal
arteriolar nerves. Anat. Rec 195, 525-534.
Barajas, L. & Wang, P., Powers, K., & Nishio, S. (1981). Identification of renal neuroeffector junctions by electron microscopy of reembedded light microscopic autoradiograms of semithin sections. J Ultrastrucu Res 77, 379-385.
Barajas, L. (1964). The innervation of the juxtaglomerular apparatus. An electron microscopic study of the innervation of the glomerular arterioles. Lab Invest 13, 916-929.
Bigoni, R., Giuliani, S., Calo’, G., Rizzi, A., Guerrini, R., Salvadori, S., Regoli, D., & Maggi, C. A. (1999). Characterization of nociceptin receptors in the periphery: in vitro and in vivo studies. Naunyn Schmiedebergs Arch Pharmacol 359, 160-167.
Blaufox, M. D., Lewis, E. J., Jagger, P., Lauler, D., Hickler, R., & Merrill, J. P. (1969). Physiologic responses of the transplanted human kidney. N Engl J Med 280, 62-66.
Bodnar, R. J. &Hadjimarkou, M. M. (2002). Endogenous opiates and behavior: 2001. Peptides 23, 2307-2365.
Borkowski, K. R. (1989). Studies on the adrenomedullary dependenceof kappa-opioid agonist-induced diuresis in conscious rats. Br J Pharmacol 98, 1151-1156.
Borlongan, C.V., Oeltgen, P.R., Su, T. P., & Wang, Y. (1999). Delta opioid peptide (DADLE) protects against ischemiareperfusion damage in the striatum and cerebral cortex. Soc Neurosci Abstr 24, 979.
Brasch, H. & Zetler, G. (1982). Caerulein and morphine in a model of visceral pain. Effects on the hypotensive responses to renal pelvis distension in the rat. Naunyn Schmiedebergs Arch Pharmacol 319, 161-167
Bruce, D.S., Cope, G.W., Elam, T.R., Ruit, S.K., Oeltgen, P.R., & Su, T.-P. (1987). Opioids and hibernation. I. Effects of naloxone on bear HIT’s depression of guinea-pig ileum contractility and on induction of summer hibernation in the ground squirrel. Life Sci 41, 2107–2113.
Bueno, L. & Fioramonti, J. (1988). Action of opiates on gastrointestinal function. Baillieres Clin Gastroenterol 2, 123-139.
Chen, Y. & Hoover, D. B. (1995). Autoradiographic localization of NK1 and NK3 tachykinin receptors in rat kidney. Peptides 16: 673-681.
DeBodo, R. C. (1944). The antidiuretic action of morphine and its mechanism. J Pharmacol Exp Ther. 82, 74-85.
Defea, K. A., Vaughn, Z. D., O’Bryan, E. M., Nishijima, D., Dery, O., & Bunnett, N. W. (2000). The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta-arrestin-dependent scaffolding complex. Proc Natl Acad Sci USA 97, 11086-11091.
DiBona, G. F. & Jones, S. Y. (2001). Sodium intake influences hemodynamic and neural responses to angiotensin receptor blockade in rostral ventrolateral medulla. Hypertension 37, 1114-1123.
DiBona, G. F., Jones, S. Y., & Kopp, U. C. (1999). Renal mechanoreceptor dysfunction: an intermediate phenotype in spontaneously hypertensive rats. Hypertension 33: 472-475.
DiBona, G. F. & Kopp, U. C. (1997). Neural control of renal function. Physiol Rev 77: 75-197,
DiBona, G. F. & Rios, L. L. (1980). Renal nerves in compensatory renal response to contralateral renal denervation. Am J Physiol 238: F26-F30.
Donald, C. & Solomon, H. (1989).Bradykinin receptors localized by quantitative autoradiography in kidney, ureter, and bladder. Am. J. Physiol. 256: F909-F915.
Drukker, J., Groen, G. J., Boekelaar, A. B., & Baljet, B. (1987). The extrinsic innervation of the rat kidney. Clin Exp Hypertens A 9 Suppl 1, 15-31.
Erdos, E. G., & Skidgel, R. A. (1989). Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. FASEB J 3: 145-151.
Evans, C. J., Keith, D. E., Jr., Morrison, H., Magendzo, K., & Edwards, R. H. (1992). Cloning of a delta opioid receptor by functional expression. Science 258, 1952-1955.
Fisher, A., Forssmann, W. G., & Undem, B. J. (1998). Nociceptin-induced inhibition of tachykinergic neurotransmission in guinea pig bronchus. J Pharmacol Exp Ther 285, 902-907.
Gross, G. J. (2003). Role of opioids in acute and delayed preconditioning. J Mol Cell Cardiol 35, 709-718.
Gross, R. A., Moises, H. C., Uhler,M. D.,&Macdonald, R. L. (1990). Dynorphin
A and cAMP-dependent protein kinase independently regulate neuronal
calcium currents. Proc Natl Acad Sci USA 87, 7025-7029.
Harris, R. H. & Yarger, W. E. (1974). Renal function after release of unilateral ureteral obstruction in rats. Am J Physiol 227, 806-815.
Hayashi, T. Hirata, H. Asanuma, M. Tsao, L.–I. Su, T. P. & Cadet, J.L. (1998) : Induction of p53 mRNA by methamphetamine (METH) is blocked by DA-DLE via nonopioid action: Potential mechanism underlying the protective effect of DADLEagainst METH-induced neurotoxicity. Soc Neurosci Abstr 24, 1243.
Hayashi, T. Tsao, T.-L. Cadet, J.L. & Su, T.-P. (1999). : (D-Ala2 -D-Leu 5) enkephalin blocks the metham-phetamineinduced c-fos mRNA increase in mouse striatum. Eur J Pharmacol 366, R7–R8.
Horton, N.D., Kaftani, D.J., Bruce, D.S., Bailey, E.C., Krober, A.S., Jones, J.R., Turker, M., Khattar, N., Su, T.-P., Bolling, S.F., & Oeltgen, P.R. (1998). Isolation and partial characterization of an opioid-like 88 kD hibernation-related protein. Comp Biochem Physiol 119, 787–805.
Ishioka, N., Takahashi, N., & Putnam, F.W. (1986).Amino acid sequence of human plasma alpha1-B-gly-coprotein: Homology to the immunoglobulin supergene family. Proc Natl Acad Sci USA 83, 2363–2367
Jordan, B. A. & Devi, L. A. (1999). G-protein-coupled receptor hetero-dimerization modulates receptor function. Nature 399, 697-700.
Kapusta, D. R. (1995). Opioid mechanisms controlling renal function. Clin Exp Pharmacol Physiol 22, 891-902.
Kapusta, D. R., Jones, S. Y., & Dibona, G. F. (1991). Renal mu opioid receptor mechanisms in regulation of renal function in rats. J Pharmacol Exp Ther 258, 111-117.
Kapusta, D. R., Jones, S. Y., Kopp, U. C., & Dibona, G. F. (1989). Role of renal nerves in excretory responses to exogenous and endogenous opioid peptides. J Pharmacol Exp Ther 248, 1039-1047.
Kapusta, D. R., Obin, J. C., & Dibona, G. F. (1993). Central mu opioid receptor- mediated changes in renal function in conscious rats. J Pharmacol Exp Ther 265, 134-143.
Klahr, S. (1991). Pathophysiology of obstructive nephropathy: a 1991 update. Semin Nephrol 11, 156-168.
Knight, D. S., Beal, J. A., Yuan, Z. P., & Fournet, T. S. (1987). Substance P-immunoreactive nerves in the rat kidney. J Auton Nerv Syst 21: 145-155.
Knight, D. S., Cicero, S., & Beal, J. A. (1991). Calcitonin gene-related peptide-immunoreactive nerves in the rat kidney. J Auton Nerv Syst 21, 145-155.
Koepke, J. P., & DiBona, G. F. (1985). Functions of the renal nerves. Physiologist 28, 47-52.
Kopp, U. C., Cicha, M. Z., Farley, D. M., Smith, L. A. & Dixon, B. S. (1998). Renal substance P-containing neurons and substance P receptors impaired in hypertension. Hypertension 31,815-822.
Kopp, U.C., Cicha, M. Z., & Smith, L. A. (2002a). Endogenous angiotensin modulates PGE(2)-mediated release of substance P from renal mechanosensory nerve fibers. Am J Physiol Regul Integr Comp Physiol 282, R19-R30.
Kopp, U. C., Cicha, M. Z., & Smith, L. A. (2002b). PGE(2) increases release of substace P from renal sensory nerves by activating the cAMP-PKA transduction cascades. Am J Physiol 282, R1618-R1627.
Kopp, U. C., Cicha, M. Z., Smith, L. A., & Hokfelt, T. (2001). Nitric oxide modulates renal sensory nerve fibers by mechanisms related to substance P receptor activation. Am J Physiol Regul Integr Comp Physiol 281, R279-R290.
Kopp, U. C., Farley, D. M., Cicha, M. Z., & Smith, L. A. (2000). Activation of renal mechanosensitive neurons involves bradykinin, protein kinase C, PGE(2), and substance P. Am J Physiol Regul Integr Comp Physiol 278, R937-R946.
Kopp, U. C., Farley, D. M., & Smith, L. A. (1996). Renal sensory receptor activation causes prostaglandin-dependent release of substance P. Am J Physiol 270, R720-R727.
Kopp, U. C., Farley, D. M., & Smith, L. A. (1997). Bradykinin-mediated activation of renal sensory neurons due to prostaglandin-dependent release of substance P. Am J Physiol 272, R2009-R2016.
Kopp, U. C., Michael, Z. C., Kazuhiro, N., Rolf, M. N., Smith, L. A., & Tomas H. (2004).Activation of EP4 receptors contributes to prostaglandin E2-mediated stimulation of renal sensory nerves. Am J Physiol Renal Physiol 287, F1269–F1282.
Kopp, U. C., Olson, L. A., & DiBona, G. F. (1984).Renorenal reflex responses to mechano- and chemoreceptor stimulation in the dog and rat. Am J Physiol 246, F67-F77.
Kopp, U. C., & Smith, L. A. (1991a). Inhibitory renorenal reflexes: a role for substance P or other capsaicin-sensitive neurons. Am J Physiol 260, R232-R239.
Kopp, U. C. & Smith, L. A. (1991b). Inhibitory renorenal reflexes: a role for renal prostaglandins in activation of renal sensory receptors. Am J Physiol 261, R1513-R1521
Kopp, U. C., Smith, L. A., & Pence, A. L. (1994). Na(+)-K(+)-ATPase inhibition sensitizes renal mechanoreceptors activated by increases in renal pelvic pressure. Am J Physiol 267, R1109-R1117.
La Grange, R. G., Sloop, C. H., & Schmid, H. E. (1973). Selective stimulation of renal nerves in the anesthetized dog. Effect on rennin release during controlled changes in renal hemodynamics. Circ Res 33, 704-712.
Lapalu, S., Moisand, C., Butour, J L., Mollereau, C., & Meunier, J. C. (1998). Different domains of the ORL1 and kappa-opioid receptors are involved in recognition of nociceptin and dynophin A. FEBS Lett 427, 296-300.
Lapalu, S., Moisand, C., Mazarguil, H., Cambois, G., Mollereau, C., & Meunier, J. C. (1997). Comparisonof the structure-activity relationships of nociceptin and dynorphin A using chimeric peptides. FEBS Lett 417, 333-336.
Law, P. Y., Wang, Y. H., & Loh, H. H. (2000). Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40, 389-430.
Leander, J .D., Zerbe, R. L., & Hart, J. C. (1985). Diuresis and suppression of vasopressin by kappa opioids: comparison with mu and delta opioids and clonidine. J Pharmacol Exp Ther 234, 463-469.
Lee, S.R., Tsuji, K., Lee, S.R., & Lo, E.H. (2004) Role of matrix metalloproteinases in delayed neuronal damage after transient global cerebral ischemia. J Neurosci 24, 671-678.
Lord, J. A. H., Waterfield, A. A., Hughes, J., & Kosterlitz, H. W. (1977).Endogenous
opioid peptides: multiple agonists and receptors. Nature 267, 495-500.
Ma, M. C., Huang, H. S. & Chen, C. F. (2002a). Impaired renal sensory responses after unilateral ureteral obstruction in the rat. J Am Soc Nephrol 13, 1008-1016.
Ma, M. C., Huang, H. S., Chien, C. T., Wu, M. S., & Chen, C. F. (2002b). Temporal decrease in renal sensory responses in rats after chronic ligation of the bile duct. Am J Physiol Renal Physiol 2002 Jul;283(1), F164-72 283, F164-172.
Ma, M. C., Huang, H.S., Chien, C. T. & Chen, C. F. (2002c). Impaired renal sensory responses after renal ischemia in the rat. J Am Soc Nephrol 13, 1872-1883.
Maier, C.M., Hsieh, L., Yu, F., Bracci, P., & Chan, P.H. (2004).Matrix metalloproteinase-9 and myeloperoxidase expression: quantitative analysis by antigen immunohistochemistry in a model of transient focal cerebral ischemia. Stroke 35, 1169-1174.
Mann, P. T., Southwell, B. R., & Furness, J. B. (1999). Internalization of the neurokinin 1 receptor in rat myenteric neurons. Neuroscience 91, 353-362.
Martin, W. R. (1983). Pharmacology of opioids. Pharmacol Rev 35, 283-323.
Martin, W. R., Eades, C. G., Thompson, J. A., Huppler, R. E., & Gilbert, P. E. (1976). The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197, 517-532.
Mayfield, K. P., & D'Alecy, L. G. (1992). Role of endogenous opioid peptides in the acute adaptation to hypoxia. Brain Res 582, 226-231
Meerson, F. Z., Ustinova, E. E., & Orlova, E. H. (1987). Prevention and elimination of heart arrhythmias by adaptation to intermittent high altitude hypoxia. Clin Cardiol 10, 783-789.
Meunier, J. C. (1997). Nociceptin/orphanin FQ and the opioid receptor-like ORL1 receptor. Eur J Pharmacol 340, 1-15.
Mollereau, C., Parmentier, M., Mailleux, P., Butour, J. L., Moisand, C., Chalon, P., Caput, D., Vassart, G., & Meuniur, J. C. (1994). ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett 341, 33-38
Moss, N. G. (1985). Electrophysiology of afferent renal nerves. Fed Proc 44, 2828-2833.
Nijima, A. (1971). Afferent discharges from arterial mechanoreceptors in the kidney of the rabbit. J Physiol 219, 477-485
Nijima, A. (1972). Studies on the blood pressure-sensitive receptors in the rabbit kidney in vivo. Jpn J Physiol 22, 433-440.
North, R. A.,Williams, J. T., Surprenant, A., & Christie, M. J. (1987). μand δ
receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci USA 84, 5487-5491.
Ono, T., Inoue, M., Rashid, M. H., Sumikawa, K. & Ueda, H. (2002). Stimulation of peripheral nociceptor endings by low dose morphine and its signaling mechanism. Neurochem Int 41, 399-407.
Osborn, J. L., Holdaas, H., Thames, M. D., & DiBona, G. F. (1983). Renal adrenoceptor mediation of antinatriuretic and renin secretion responses to low frequency renal nerve stimulation in the dog. Circ Res 53, 298-305.
Osborn, J. L., Kopp, U.C., Thames, M. D. & DiBona, G. F. (1984). Interactions among renal nerves, prostaglandins, and renal arterial pressure in the regulation of renin release. Am J Physiol 247, F706-F713.
Oeltgen, P.R., Nilekani, S.P., Nuchols, P.A., Spurrier, W.A., & Su, T.-P. (1988).
Further studies on opioid and hibernation:Delta opioid receptor ligand selectively induced hibernation in summer-active ground squirrels. Life Sci 43, 1565–1574.
Quartara, L. & Maggi, C. A. (1998). The tachykinin NK1 receptor. Part II: Distribution and pathophysiological roles. Neuropeptides 32, 1-49.
Recordati, G., Genovesi, S., & Cerati, D. (1982). Renorenal reflex in the rat elicited upon stimulation of renal chemoreceptors. J Auton Nerv Syst 6, 127-142.
Recordati, G. M., Moss, N. G., & Waselkov, L. (1978). Renal chemoreceptors in the rat. Circ Res 43, 534-543.
Ribstein, J. & Humphreys, M. H. (1983). Endogenous opioid and electrolyte excretion after contralateral renal exclusion. Am J Physiol 244, F392-F398.
Rodrigues, A. R. & Duarter, I. D. (2000). The peripheral antinociceptive effect induced by morphine is associated with ATP-sensitive K(+) channels. Br J Pharmacol 129, 110-114.
Salas, S. P., Roblero, J., Ureta, H., & Huidobro-Toro, J. P. (1989). Diuretic effect of bremazocine, a kappa-opioid with central and peripheral sites of action. J Pharmacol Exp Ther 250, 992-999.
Sharma, S. K., Klee, W. A., & Nirenberg, M. (1977). Opiate-dependent modulation of adenylate cyclase. Proc Natl Acad Sci USA 74, 3365-3369.
Sheng, J. Z., Wong, N. S., Tai, K. K., & Wong, T. M. (1996). Lithium
attenuates the effects of dynorphin A(1- 13) on inositol 1,4,5-triphosphate and
intracellular Ca2 + in rat ventricular myocytes. Life Sci 59,2181-2186.
Smith, H. W. (1951). The kidney: Structure and Function in Health and Disease. 471.
Stein, C. (1995). The control of pain in peripheral tissue by opioids. N Engl J Med 332, 1685-1690.
Stein, C., Machelska, H., Binder, W., & Schafer, M. (2001). Perioheral opioid analgesia. Curr Opin Pharmacol 1, 62-65.
Stella, A., & Zanchetti, A. (1991). Functional role of renal afferents. Physiol Rev 71, 659-682.
Tsao, L. I., Ladenheim, B., Andrews, A., Chiueh, C.C., Cadet, J.L., & Su, T. P. (1998): Delta opioid peptide (D-Ala 2 ,DLeu-5) enkephalin blocks the long-term loss of dopamine transporter induced by multiple administrations of methamphetamine: In-volvement of opioid receptors andreactive oxygen species. J Pharmacol Exp Ther 287, 322–331.
Wittert, G., Hope, P., & Pyle, D. (1996). Tissue distribution of opioid receptor gene expression in the rat. Biochem. Biophys. Res Commun 218, 877-881.
Yamanouchi, K., Yanaga, K., Okudaira, S., Eguchi, S., Furui, J., & Kanematsu, T. (2003). [D-Ala2, D-Leu5] enkephalin (DADLE) protecrs liver against ischemia-reperfusion injury in the rat. J Surg Res 114, 72-77.
Yoshihiro, I., Tetsuji, M., Jun, S., Takayuki, M., Masaya, T., Hironori, K., Katsuhiko, O., Akari, T., & Kazuaki, S. (2006). Activation of ERK and suppression of calcineurin are interacting mechanisms of cardioprotection afforded by δ-opioid receptor activation. Basic Res Cardiol 101,418–426.
Zagon, I. S., Gibo, D. M., & McLaughlin, P. J. (1991). Zeta (zeta), agrowth-related opioid receptor in developing rat cerebellum: identification and characterization. Brain Res 551, 28-35.
Zhang, H. Y., McPherson, B. C., Liu, H., Baman, T., Mcpherson, S. S., Rock, P., & Yao, Z. (2002). Role of nitric-oxide synthase, free radicals, and protein kinase C delta in opioid-induced cardioprotection. J Pharmacol Exp Ther 301, 1012-1019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37308-
dc.description.abstract許多腎臟疾病與腎臟感覺反應不全有關,由此可知腎臟感覺功能的重要性。在電生理的研究下,有兩種位於腎盂部位的受體被發現:(a)感應腎臟內壓力變化的腎壓力性受體(renal mechanoreceptors)、(b)感應腎臟缺血及腎內化學環境改變的腎化學性受體(renal chemoreceptor)。
本論文想探討利用腎盂灌注方式給予類鴉片致效劑[D-Ala2, D-Leu5]-enkephalin (DADLE),在缺血再灌流的傷害下,對於腎臟的反應有甚麼樣的作用。另外,DADLE在許多器官的實驗中(例如:肝臟、心臟),已被證實對於缺血再灌流所造成的傷害具有保護作用。本論文也探討事先給予DADLE對腎臟遭受到缺血再灌流(4小時及24小時)的傷害,在腎臟感覺神經的反應及對體液膨脹的排泄能力是否有其保護的作用。
經過西方墨點法發現在缺血再灌流24小時後,δ-opioid receptor(DOR)的表現量有明顯的增加,但缺血再灌流4小時則未見顯著增加。若從腎盂灌注類鴉片受體致效劑,則會增加傳入性腎神經活性(afferent renal nerve activity) ;尤其在腎動脈阻塞(renal artery occlusion)的大鼠中,增加得更明顯,且具有一濃度依存性。利用將腎盂壓力提高至60、80mmHg,發現到在有無致效劑的存在下,腎臟感覺神經的反應並沒有太大的變化。
在體液擴張的實驗中,在DADLE前處理後,對於缺血再灌流4小時的腎臟排泄功能有顯著改善的現象。在腎臟感覺神經的功能方面, DADLE 前處理後,在缺血再灌流4小時及24小時後,刺激腎壓力性受體,對於腎感覺神經的活性有顯著的增加,且在選擇性δ類鴉片受體拮抗劑前處理下,會顯著抑制腎感覺神經的活性,而刺激化學性受體,反應則無明顯變化。因此可以確認DADLE所產生的腎臟保護作用,確實是經由活化δ類鴉片受體而來。
本實驗發現δ型類鴉片受體致效劑DADLE,對於腎臟的感覺功能確實存在一保護作用。然而,對於其所調控的機轉,及其他腎功能相關證據,均有待進一步的研究。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-13T15:24:00Z (GMT). No. of bitstreams: 1
ntu-97-R95441013-1.pdf: 1055500 bytes, checksum: 55c0c76613758ab59067c379f7e3bee1 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目次-----------------------------------------------------------------------------------------------I
縮寫表-------------------------------------------------------------------------------------------VI
中文摘要---------------------------------------------------------------------------------------VII
英文摘要---------------------------------------------------------------------------------------VIII
表次-----------------------------------------------------------------------------------------------X
圖次-----------------------------------------------------------------------------------------------XI
一、文獻回顧
1、腎功能的神經調控
1-1、前言----------------------------------------------------------------------------------01
1-2、腎神經的分布----------------------------------------------------------------------02
1-2-1、外源的神經分布------------------------------------------------------------02
1-2-2、內在的神經分布------------------------------------------------------------03
(A)、傳出性的神經分布---------------------------------------------------------03
(B)、傳入性的神經分布---------------------------------------------------------04
1-3、腎臟腎臟反射----------------------------------------------------------------------05
1-3-1、腎壓力性受體-----------------------------------------------------------05
1-3-2、腎化學性受體-----------------------------------------------------------06
1-3-3、傳入性腎神經的活化--------------------------------------------------06
1-3-4、生理意義-----------------------------------------------------------------07
1-3-5、作用機制-----------------------------------------------------------------07
(A)、傳遞路徑----------------------------------------------------------------07
(B)、傳遞路徑的調節-------------------------------------------------------08
1-4、腎感覺神經與腎病變-------------------------------------------------------------09
1-4-1、腎感覺神經在體液不平衡中的變化--------------------------------09
1-4-2、肝硬化引起的腎衰竭--------------------------------------------------09
1-4-3、缺血性腎衰竭-----------------------------------------------------------10
1-4-4、單側輸尿管阻塞--------------------------------------------------------10
2、類鴉片
2-1、前言----------------------------------------------------------------------------------11
2-2、類鴉片受體-------------------------------------------------------------------------11
2-3、內生性類鴉片胜肽----------------------------------------------------------------12
2-4、類鴉片受體的訊息傳遞----------------------------------------------------------13
2-5、類鴉片的作用----------------------------------------------------------------------13
2-5-1、對中樞的作用-----------------------------------------------------------13
2-5-2、對周邊的作用-----------------------------------------------------------14
(A)、周邊止痛(peripheral analgesia)-------------------------------------14
(B)、免疫系統的調控------------------------------------------------------14
(C)、呼吸道(airway)的調控-----------------------------------------------14
(D)、腸胃道(gastrointestinal tract)的調控-------------------------------15
2-6、類鴉片與腎功能--------------------------------------------------------------------15
2-6-1、類鴉片作用在周邊影響腎功能的情形------------------------------16
2-6-2、類鴉片作用在腎臟影響腎功能的情形------------------------------16
2-6-3、類鴉片作用在中樞影響腎功能的情形------------------------------16
2-6-4、作用機制------------------------------------------------------------------17
2-6-4-1、μ型類鴉片的抗利尿機制---------------------------------------17
2-6-4-2、ĸ型類鴉片的利尿機制------------------------------------------17
3、類鴉片的保護作用
3-1、起源-------------------------------------------------------------------------------------17
3-2、冬眠與類鴉片-------------------------------------------------------------------------18
3-3、[D-Ala2, D-Leu5]-Enkephalin ( DADLE )的保護作用-------------------------19
3-3-1、中樞神經系統的保護作用---------------------------------------------19
3-3-2、肝臟的保護作用---------------------------------------------------------20
3-3-3、心臟的保護作用---------------------------------------------------------20
二、研究目的-----------------------------------------------------------------------------22
三、研究材料及方法
1、實驗動物之準備
1-1、實驗動物的飼養------------------------------------------------------------------------23
1-2、誘發缺血性腎衰竭 -------------------------------------------------------------------23
2、西方墨漬分析 (Western blotting analysis)之方法---------------------------23
3、一般手術------------------------------------------------------------------------------------25
4、傳入腎神經活性(ARNA)的研究
4-1、手術及記錄方法-------------------------------------------------------------------------25
4-2、刺激腎壓力性受體對ARNA之反應------------------------------------------------26
4-3、 興奮δ型類鴉片受體致效劑對大鼠ARNA的影響-----------------------------26
4-4、興奮δ型類鴉片受體對刺激腎壓力性受體的影響--------------------------------26
5、類鴉片對腎臟的保護功能
5-1、給藥的方式------------------------------------------------------------------------------27
5-2、類鴉片受體致效劑前處理對急性體液擴張試驗---------------------------------27
5-3、選擇性類鴉片受體致效劑及拮抗劑前處理對腎感覺受體的影響------------28
5-3-1、對腎壓力性受體的影響--------------------------------------------------28
5-3-2、對腎化學性受體的影響--------------------------------------------------28
6、腎盂內物質P釋放量之研究
6-1、腎盂流出物的檢體收集-----------------------------------------------------------------28
6-2、檢體中SP含量的測定-------------------------------------------------------------------29
四、結果
1、腎盂內DOR 蛋白----西方墨漬分析(western blotting analysis)---------30
2、類鴉片對傳入性腎神經(ARNA)活性之影響
2-1、類鴉片受體致效劑對ARNA之影響-------------------------------------------------30
2-2、興奮δ型類鴉片受體對腎壓力性刺激的反應--------------------------------------31
3、δ型類鴉片受體致效劑對腎臟的保護作用
3-1、類鴉片受體致效劑前處理對急性體液擴張試驗-----------------------------------31
3-2、選擇性δ類鴉片受體致效劑及拮抗劑前處理對腎感覺反應的影響-----------31
3-2-1、刺激腎壓力性受體----------------------------------------------------------31
3-2-2、刺激腎化學性受體----------------------------------------------------------32
4、選擇性δ類鴉片受體致效劑對腎臟的保護作用與腎盂內物質P
釋放之相關----------------------------------------------------------------------------------33
五、討論
1、內在鴉片系統與腎臟感覺功能------------------------------------------------------34
2、腎盂內之類鴉片受體--------------------------------------------------------------------35
3、δ型類鴉片致效劑對ARNA的影響-----------------------------------------------35
4、腎動脈阻塞(RAO)處理下,ARNA的變化-------------------------------------36
5、腎動脈阻塞(RAO)處理下,類鴉片受體的改變------------------------------36
6、類鴉片受體的保護作用----------------------------------------------------------------37
6-1、類鴉片受體致效劑對心臟、肝臟的保護作用與機轉------------------------------37
6-2、類鴉片受體致效劑對神經系統的保護作用------------------------------------------37
6-3、類鴉片受體致效劑對腎臟的保護作用------------------------------------------------38
7、未來方向-------------------------------------------------------------------------------------39
六、結論-----------------------------------------------------------40
七、參考文獻----------------------------------------------------------------------------------69
dc.language.isozh-TW
dc.subjectδ-Opioid Receptor Agonisten
dc.titleδ類鴉片受體致效劑對腎感覺功能的影響zh_TW
dc.titleThe Renal Sensory Effect of δ-Opioid Receptor Agonisten
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳明修,鄭劍廷
dc.subject.keywordδ類鴉片受體致效劑,zh_TW
dc.subject.keywordδ-Opioid Receptor Agonist,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2008-07-22
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved