Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37292
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周宏農
dc.contributor.authorChieh-Ting Linen
dc.contributor.author林界廷zh_TW
dc.date.accessioned2021-06-13T15:23:34Z-
dc.date.available2010-07-24
dc.date.copyright2008-07-24
dc.date.issued2008
dc.date.submitted2008-07-23
dc.identifier.citationAnish B. 2006. Neurological impact of vasopressin dysregulation and hyponatremia.
Ann. Neurol. 59(2): 229-236.
Baden DG, Bourdelais AJ, Jacocks H, Michelliza S, Naar J. 2005. Natural and
derivative brevetoxins: historical background, multiplicity, and effects. Environ.
Health Perspect.. 113(5): 621-625.
Baden DG, Mende TJ. 1982. Toxicity of two toxins from the Florida red tide marine
dinoflagellate, Ptychodiscus brevis. Toxicon 20(2): 457-461.
Baden DG, Tomas CR. 1988. Variations in major toxin composition for six clones of
Ptychodiscus brevis. Toxicon 26(10): 961-963
Bakke MJ, Horsberg TE. 2007. Effects of algal-produced neurotoxins on metabolic
activity in telencephalon, optic tectum and cerebellum of Atlantic salmon (Salmo
salar). Aquat. Toxicol. 85(2): 96-103.
Baraban SC, Taylor MR, Castro PA, Baier H. 2005. Pentylenetetrazole induced
changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience
131(3): 759-768.
Berman FW, Murray TF. 2000. Brevetoxin-induced autocrine excitotoxicity is
associated with manifold routes of Ca2+ influx. J. Neurochem. 74(4): 1443-1451.
Borison HL, McCarthy LE, Ellis S. 1985. Neurological analysis of respiratory,
cardiovascular and neuromuscular effects of brevetoxin in cats. Toxicon 23(3):
517-524.
Bottein Dechraoui M-Y, Ramsdell JS. 2003. Type B brevetoxins show tissue
33
selectivity for voltage-gated sodium channels: comparison of brain, skeletal muscle
and cardiac sodium channels. Toxicon 41(7): 919-927.
Bottein Dechraoui M-Y, Wacksman JJ, Ramsdell JS. 2006. Species selective
resistance of cardiac muscle voltage gated sodium channels: Characterization of
brevetoxin and ciguatoxin binding sites in rats and fish. Toxicon 48(6): 702-712.
Camacho FG, Rodriguez JG, Miron AS, Garcia MC, Belarbi EH, Chisti Y, Grima EM.
2007. Biotechnological significance of toxic marine dinoflagellates. Biotechnol. Adv.
25(2): 176-194.
Catterall WA, Gainer M. 1985. Interaction of brevetoxin A with a new receptor site
on the sodium channel. Toxicon 23(3): 497-504.
Choich J, Salierno JD, Silbergeld EK, Kane AS. 2004. Altered brain activity in
brevetoxin-exposed bluegill, Lepomis macrochirus, visualized using in vivo 14C
2-deoxyglucose labeling. Environ. Research 94(2): 192-197.
Chou HN. 1986. Isolation and characterization of toxins in the red tide dinoflagellte
Gymnodinium breve Davis (= Ptychodiscus brevis), Ph.D. Dissertation, University of
Rhode Island, Kingston, RI. USA 188p.
Colman JR, Ramsdell JS. 2003. The type B brevetoxin (PbTx-3) adversely affects
development, cardiovascular function, and survival in Medaka (Oryzias latipes)
embryos. Environ. Health Perspect. 111(16): 1920-1925.
Cuypers E, Yanagihara A, Rainier JD, Tytgat J. 2007. TRPV1 as a key determinant in
ciguatera and neurotoxic shellfish poisoning. Biochem. Biophys. Res. Commun.
361(1): 214-217.
34
Dampney RA, Horiuchi J. 2003. Functional organisation of central cardiovascular
pathways: studies using c-fos gene expression. Prog. Neurobiol. 71(5): 359-384.
de Salas MF, Laza-Martínez A, Hallegraeff GM. 2008. Novel unarmored
dinoflagellated from the toxigenic family Kareniaceae (Gymnodiniales): five new
species of Karlodinium and one new Takayama from the Australian sector of the
Southern Ocean. J. Phycol. 44(1): 241-257.
Dickey R, Jester E, Granade R, Mowdy D, Moncreiff C, Rebarchik D, Robl M,
Musser S, Poli M, 1999. Monitoring brevetoxins during a Gymnodinium breve red
tide: comparison of sodium channel specific cytotoxicity assay and mouse bioassay
for determination of neurotoxic shellfish toxins in shellfish extracts. Nat. Toxins 7(4):
157-165.
Dragunow M, Robertson HA. 1987. Generalized seizures induce c-fos protein(s) in
mammalian neurons. Neurosci. Lett. 82(2): 157-161.
Dravid SM, Baden DG, Murray TF. 2004. Brevetoxin activation of voltage-gated
sodium channels regulates Ca dynamics and ERK1/2 phosphorylation in murine
neocortical neurons. J. Neurochem. 89(3): 739-749.
Edmunds JS, McCarthy RA, Ramsdell JS. 1999. Ciguatoxin reduces larval
survivability in finfish. Toxicon 37(12): 1827-1832.
Elizabeth R. Fairey JSR. 1999. Reporter gene assays for algal-derived toxins. Nat.
Toxins 7(6): 415-421.
Fairey ER, Bottein Dechraoui MY, Sheets MF, Ramsdell JS. 2001. Modification of
the cell based assay for brevetoxins using human cardiac voltage dependent sodium
channels expressed in HEK-293 cells. Biosens. Bioelectron. 16(7-8): 579-586.
35
Fleming LE, Backer LC, Baden DG. 2005. Overview of aerosolized Florida red tide
toxins: exposures and effects. Environ. Health Perspect. 113(5): 618-620.
Flewelling LJ, Naar JP, Abbott JP, Baden DG, Barros NB, Bossart GD, Bottein MY,
Hammond DG, Haubold EM, Heil CA, HenryMS, Jacocks HM, Leighfield TA,
Pierce RH, Pitchford TD, Rommel SA, Scott PS, Steidinger KA, Truby EW, Van
Dolah FM, Landsberg JH. 2005. Brevetoxicosis: red tides and marine mammal
mortalities. Nature 435(7043): 755-756.
Forrester DJ, Gaskin JM, White FH, Thompson NP, Quick JA, Jr., Henderson GE,
Woodard JC, Robertson WD. 1977. An epizootic of waterfowl associated with a red
tide episode in Florida. J. Wildlife Dis. 13(2): 160-167.
Franz DR, LeClaire RD. 1989. Respiratory effects of brevetoxin and saxitoxin in
awake guinea pigs. Toxicon 27(6): 647-654.
Gawley RE, Rein KS, Jeglitsch G, Adams DJ, Theodorakis EA, Tiebes J, Nicolaou
KC, Baden DG. 1995. The relationship of brevetoxin 'length' and A-ring functionality
to binding and activity in neuronal sodium channels. Chem. Biol. 2(8): 533-541.
Gordon CJ, Kimm-Brinson KL, Padnos B, Ramsdell JS. 2001. Acute and delayed
thermoregulatory response of mice exposed to brevetoxin. Toxicon 39(9): 1367-1374.
Haywood AJ, Steidinger KA, Truby EW, Bergquist PR, Bergquist PL, Adamson J,
Mackenzie L. 2004. Comparative morphology and molecular phylogenetic analysis of
three new species of the genus Karenia (Dinophyceae) from New Zealand. J. Phycol.
40(1): 165-179.
Hunt SP, Pini A, Evan G. 1987. Induction of c-fos-like protein in spinal cord neurons
following sensory stimulation. Nature 328(6131): 632-634.
36
Ishida H, Muramatsu N, Nukaya H, Kosuge T, Tsuji K. 1996. Study on neurotoxic
shellfish poisoning involving the oyster, Crassostrea gigas, in New Zealand. Toxicon
34(9): 1050-1053.
Ishida H, Nozawa A, Nukaya H, Tsuji K. 2004. Comparative concentrations of
brevetoxins PbTx-2, PbTx-3, BTX-B1 and BTX-B5 in cockle, Austrovenus
stutchburyi, greenshell mussel, Perna canaliculus, and Pacific oyster, Crassostrea
gigas, involved neurotoxic shellfish poisoning in New Zealand. Toxicon 43(7):
779-789.
Jacobson ER, Homer BL, Stacy BA, Greiner EC, Szabo NJ, Chrisman CL, Origgi F,
Coberley S, Foley AM, Landsberg JH, Flewelling L, Ewing RY, Moretti R, Schaf S,
Rose C, Mader DR, Harman GR, Manire CA, Mettee NS, Mizisin AP, Shelton GD.
2006. Neurological disease in wild loggerhead sea turtles Caretta caretta. Dis. Aquat.
Organ. 70(1-2): 139-154.
Johnson GL, Spikes JJ, Ellis S. 1985. Cardiovascular effects of brevetoxins in dogs.
Toxicon 23(3): 505-515.
Kennedy CJ, Schulman LS, Baden DG, Walsh PJ. 1992. Toxicokinetics of brevetoxin
PbTx-3 in the gulf toadfish, Opsanus beta, following intravenous administration.
Aquat. Toxicol. 22(1): 3-14.
Kim SW, Frokiaer J, Nielsen S. 2007. Pathogenesis of oedema in nephrotic syndrome:
role of epithelial sodium channel. Nephrology (Carlton) 12(3): 8-10.
Kimm-Brinson KL, Ramsdell JS. 2001. The red tide toxin, brevetoxin, induces
embryo toxicity and developmental abnormalities. Environ. Health Perspect. 109(4):
377-381.
37
Kirkpatrick B, Fleming LE, Backer LC, Bean JA, Tamer R, Kirkpatrick G, Kane T,
Wanner A, Dalpra D, Reich A, Baden DG. 2006. Environmental exposures to Florida
red tides: Effects on emergency room respiratory diagnoses admissions. Harmful
Algae 5(5): 526-533.
Lanteri-Minet M, Weil-Fugazza J, de Pommery J, Menetrey D. 1994. Hindbrain
structures involved in pain processing as revealed by the expression of c-Fos and
other immediate early gene proteins. Neurosci. 58(2): 287-298.
Lefebvre KA, Trainer VL, Scholz NL. 2004. Morphological abnormalities and
sensorimotor deficits in larval fish exposed to dissolved saxitoxin. Aquat. Toxicol.
66(2): 159-170.
Liberona JL, Cárdenas JC, Reyes R, Hidalgo J, Molgó J, Jaimovich E. 2008.
Sodium-dependent action potentials induced by brevetoxin-3 trigger both IP3 increase
and intracellular Ca2+ release in rat skeletal myotubes. Cell Calcium
doi:10.1016/j.ceca.2007.12.009
Lin YY, Risk M, Ray SM, Vanengen D, Clardy J, Golik J, James JC, Nakanishi K.
1981. Isolation and Structure of Brevetoxin-B from the Red Tide Dinoflagellate
Ptychodiscus-Brevis (Gymnodinium breve). J. Am. Chem. Soc. 103(22): 6773-6775.
Mattei C, Dechraoui MY, Molgo J, Meunier FA, Legrand AM, Benoit E. 1999.
Neurotoxins targetting receptor site 5 of voltage-dependent sodium channels increase
the nodal volume of myelinated axons. J. Neurosci. Res. 55(6): 666-673.
Mattei C, Molgo J, Legrand AM, Benoit E. 1999. Ciguatoxins and brevetoxins:
dissection of the neurobiological actions. J. Soc. Biol. 193(3): 329-344.
Maucher JM, Briggs L, Podmore C, Ramsdell JS. 2007. Optimization of blood
38
collection card method/enzyme-linked immunoassay for monitoring exposure of
bottlenose dolphin to brevetoxin-producing red tides. Environ. Sci. Technol. 41(2):
563-567.
Milan DJ, Jones IL, Ellinor PT, MacRae CA. 2006. In vivo recording of adult
zebrafish electrocardiogram and assessment of drug-induced QT prolongation. Am. J.
Physiol. Heart Circ. Physiol. 291(1): H269-273.
Mizell M, Romig ES. 1997. The aquatic vertebrate embryo as a sentinel for toxins:
zebrafish embryo dechorionation and perivitelline space microinjection. Int. J. Dev.
Biol. 41(2): 411-423.
Morgan JI, Cohen DR, Hempstead JL, Curran T. 1987. Mapping patterns of c-fos
expression in the central nervous system after seizure. Science 237(4811): 192-197.
Naar J, Bourdelais A, Tomas C, Kubanek J, Whitney PL, Flewelling L, Steidinger K,
Lancaster J, Baden DG. 2002. A competitive ELISA to detect brevetoxins from
Karenia brevis (formerly Gymnodinium breve) in seawater, shellfish, and mammalian
body fluid. Environ. Health Perspect. 110(2): 179-185.
Naar JP, Flewelling LJ, Lenzi A, Abbott JP, Granholm A, Jacocks HM, Gannon D,
Henry M, Pierce R, Baden DG, Wolny J, Landsberg JH. 2007. Brevetoxins, like
ciguatoxins, are potent ichthyotoxic neurotoxins that accumulate in fish. Toxicon
50(5): 707-723.
Novak AE, Taylor AD, Pineda RH, Lasda EL, Wright MA, Ribera AB. 2006.
Embryonic and larval expression of zebrafish voltage-gated sodium channel
alpha-subunit genes. Dev. Dyn. 235(7): 1962-1973.
Peng YG, Ramsdell JS. 1996. Brain Fos induction is a sensitive biomarker for the
39
lowest observed neuroexcitatory effects of domoic acid. Fund. Appl. Toxicol. 31(2):
162-168.
Peng YG, Taylor TB, Finch RE, Moeller PD, Ramsdell JS. 1995. Neuroexcitatory
actions of ciguatoxin on brain regions associated with thermoregulation. Neuroreport
6(2): 305-309.
Pierce RH, Henry MS, Blum PC, Hamel SL, Kirkpatrick B, Cheng YS, Zhou Y, Irvin
CM, Naar J, Weidner A, Fleming LE, Backer LC, Baden DG. 2005. Brevetoxin
composition in water and marine aerosol along a Florida beach: Assessing potential
human exposure to marine biotoxins. Harmful Algae 4(6): 965-972.
Plakas SM, el-Said KR, Jester EL, Granade HR, Musser SM, Dickey RW. 2002.
Confirmation of brevetoxin metabolism in the eastern oyster (Crassostrea virginica)
by controlled exposures to pure toxins and to Karenia brevis cultures. Toxicon 40(6):
721-729.
Poli MA, Musser SM, Dickey RW, Eilers PP, Hall S. 2000. Neurotoxic shellfish
poisoning and brevetoxin metabolites: a case study from Florida. Toxicon 38(7):
981-993.
Rein KS, Lynn B, Gawley RE, Baden DG. 1994. Brevetoxin B: chemical
modifications, synaptosome binding, toxicity, and an unexpected conformational
effect. J. Org. Chem. 59(8): 2107-2113.
Rodgers RL, Chou HN, Temma K, Akera T, Shimizu Y. 1984. Positive inotropic and
toxic effects of brevetoxin-B on rat and guinea pig heart. Toxicol. Appl. Pharmacol.
76(2): 296-305.
Salierno JD, Snyder NS, Murphy AZ, Poli M, Hall S, Baden D, Kane AS. 2006.
40
Harmful algal bloom toxins alter c-Fos protein expression in the brain of killifish,
Fundulus heteroclitus. Aquat. Toxicol. 78(4): 350-357.
Shimizu Y, Chou HN, Bando H, Van Duyne G, Clardy J. 1986. Structure of
brevetoxin A (GB-1 toxin), the most potent toxin in the Florida red tide organism
Gymnodinium breve (Ptychodiscus brevis). J. Am. Chem. Soc. 108(3): 514-515.
Spiegelstein MY, Paster Z, Abbott BC. 1973. Purification and biological activity of
Gymnodinium breve toxins. Toxicon 11(1): 85-93.
Starr TJ. 1958. Notes on a toxin from Gymnodinium breve. Texas Rep. Biol. Med.
16(4): 500-507.
Steidinger KA, Ingle RM. 1972. Observations on the 1971 summer red tide in Tampa
Bay, Florida. Environ. Lett. 3(4): 271-278.
Stinner B, Krohn E, Gebhard MM, Bretschneider HJ. 1989. Intracellular sodium
activity and Bretschneider's cardioplegia: continuous measurement by ion-selective
microelectrodes at initial equilibration. Basic Res. Cardiol. 84(2): 197-207.
Stuart AM, Baden DG. 1988. Florida red tide brevetoxins and binding in fish brain
synaptosomes. Aquat. Toxicol. 13(4): 271-279.
Templeton CB, Poli MA, LeClaire RD. 1989. Cardiorespiratory effects of brevetoxin
(PbTx-2) in conscious, tethered rats. Toxicon 27(9): 1043-1049.
Thisse C, Thisse B, Schilling TF, Postlethwait JH. 1993. Structure of the zebrafish
snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos.
Development 119(4): 1203-1215.
Tiedeken JA, Ramsdell JS, Ramsdell AF. 2005. Developmental toxicity of domoic
41
acid in zebrafish (Danio rerio). Neurotoxicol. Teratol. 27(5): 711-717.
Trainer VL, Baden DG, Catterall WA. 1994. Identification of peptide components of
the brevetoxin receptor site of rat brain sodium channels. J. Biol. Chem. 269(31):
19904-19909.
Tsai MC, Chen ML. 1991. Effects of brevetoxin-B on motor nerve terminals of mouse
skeletal muscle. Br. J. Pharmacol. 103(1): 1126-1128.
Twiner MJ, Bottein Dechraoui MY, Wang Z, Mikulski CM, Henry MS, Pierce RH,
Doucette GJ. 2007. Extraction and analysis of lipophilic brevetoxins from the red tide
dinoflagellate Karenia brevis. Anal. Biochem. 369(1): 128-135.
Wang S-Y, Wang GK. 2003. Voltage-gated sodium channels as primary targets of
diverse lipid-soluble neurotoxins. Cell Signal 15(2): 151-159.
Whitney PL, Baden DG. 1996. Complex association and dissociation kinetics of
brevetoxin binding to voltage-sensitive rat brain sodium channels. Nat. Toxins 4(6):
261-270.
Woofter R, Dechraoui MYB, Garthwaite I, Towers NR, Gordon CJ, Cordova J,
Ramsdell JS. 2003. Measurement of brevetoxin levels by radioimmunoassay of blood
collection cards after acute, long-term, and low-dose exposure in mice. Environ.
Health Perspect. 111(13): 1595-1600.
Woofter RT, Brendtro K, Ramsdell JS. 2005. Uptake and elimination of brevetoxin in
blood of striped mullet (Mugil cephalus) after aqueous exposure to Karenia brevis.
Environ. Health Perspect. 113(1): 11-16.
Yu FH, Catterall WA. 2003. Overview of the voltage-gated sodium channel family.
42
Genome Biol. 4(3): 207.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37292-
dc.description.abstract短裸甲藻毒素 (PbTxs)為含有兩大類化學架構差異的多環醚類毒素,皆由渦鞭毛藻的凱倫藻屬 (Karenia)中的藻種所產生,當此類有毒藻形成水華,會造成大量魚類和其他海洋生物的暴斃以及神經性貝毒的危害。為比較兩類PbTxs毒性上的差異,利用PbTx-1和 PbTx-2分別代表Type-A 和Type-B PbTx觀察對斑馬魚胚發育的影響。結果顯示浸泡於不同濃度的PbTxs下,會對斑馬魚胚的畸形率和存活率造成不同程度的影響,而PbTxs所造成的毒性乃源自於鈉離子的存在,且毒力可經由鈉離子通道抑制劑,例如河豚毒素 (TTX) 來抑制減弱。另外PbTx-1會導致心臟及神經有c-fos的大量表現,並使心跳速率不正常,但是這些異常現象在PbTx-2的處理中並不明顯。由於這些差異,說明了此兩類毒素主架構上的不同造成對不同鈉離子通道間的親和力有所差異,並產生了發育致畸時的某些不同表現。zh_TW
dc.description.abstractBrevetoxins (PbTxs) are polyether toxins with two series of different chemical structures. They are produced by the red tide dinoflagellate species belonging to genus Karenia that cause massive fish and ocean creature fatalities and neurotoxic shellfish poisoning in human. To compare the toxicity between two types of PbTxs, I used PbTx-1 and PbTx-2 to represent the Type-A and Type-B PbTxs and observed their effects on zebrafish development. By the exposure of PbTxs at different concentrations to zebrafish embryo, I had determined the differential effects of PbTx-1 and PbTx-2 on embryonic abnormality and survival of zebrafish. In addition, the effects of PbTxs were demonstrated to be dependent on the presence of sodium and could be alleviated by the sodium channels blocker TTX. Lastly, I showed that PbTx-1, but less potent by PbTx-2 greatly enhanced the expression of c-fos in the heart and neuronal regions, which was correlated to the inhibition on the heart beats of zebrafish embryo. Those differential effects of PbTx-1 and PbTx-2 reflect the major structural difference between the two toxins which causes different affinity on sub-types of sodium channels that differentially expressed during development.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:23:34Z (GMT). No. of bitstreams: 1
ntu-97-R94b45002-1.pdf: 1378767 bytes, checksum: a4ff84d4651d11faf71dfa584c48fa91 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要......................................... i
Abstract......................................... ii
Introduction..................................... 1
Materials and Methods............................ 11
Result........................................... 19
Discussion........................................25
Reference.........................................32
Tables............................................42
Figures.......................................... 45
dc.language.isoen
dc.subjectc-foszh_TW
dc.subject短裸甲藻毒素zh_TW
dc.subject斑馬魚zh_TW
dc.subject鈉離子通道zh_TW
dc.subjectbrevetoxinen
dc.subjectzebrafishen
dc.subjectc-fosen
dc.subjectvoltage-gated sodium channelen
dc.title不同短裸甲藻毒素主幹在斑馬魚發育、心搏速率和c-fos表現上的相同與差異影響zh_TW
dc.titleConsistent and inconsistent effects of different brevetoxin skeletons on the development, heart rate and c-fos expression in zebrafishen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee嚴宏洋,蔡明正,李士傑
dc.subject.keyword短裸甲藻毒素,斑馬魚,鈉離子通道,c-fos,zh_TW
dc.subject.keywordbrevetoxin,zebrafish,voltage-gated sodium channel,c-fos,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2008-07-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved