請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37288完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林裕彬 | |
| dc.contributor.author | Pei-Jung Wu | en |
| dc.contributor.author | 吳佩蓉 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:23:28Z | - |
| dc.date.available | 2009-07-24 | |
| dc.date.copyright | 2008-07-24 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-23 | |
| dc.identifier.citation | 1. Agarwal, C., Northeastern Research, S., United, S., & Forest, S. (2002) A review and assessment of land-use change Models: dynamics of space, time, and human choice. US Dept. of Agriculture, Forest Service, Northeastern Research Station.
2. Alonso, D. & Sole, R.V. (2000) The DivGame Simulator: a stochastic cellular automata model of rainforest dynamics. Ecological Modelling, 133, 131-141. 3. Angelsen, A. & Kaimowitz, D. (1999) Rethinking the causes of Ddforestation: lessons from economic models. The World Bank Research Observer, 14, 73-98. 4. Arabi, M., Govindaraju, R.S., & Hantush, M.M. (2007) A probabilistic approach for analysis of uncertainty in the evaluation of watershed management practices. Journal of Hydrology, 333, 459-471. 5. Arnold, J.G. & Allen, P.M. (1996) Estimating hydrologic budgets for three Illinois watersheds. Journal of Hydrology, 176, 57-77. 6. Arnold, J.G., Srinivasan, R., Muttiah, R.S., & Williams, J.R. (1998) Large area hydrologic modeling and assessment part I: model development. Journal of the American Water Resources Association, 34, 73-89. 7. Aspinall, R.J. (1996) Some issues measuring and modelling (bio)diversity. In The spatial dynamics of biodiversity. Proceedings of the 5th annual IALE (UK) conference (ed. by I.A. Simpson & P. Dennis), pp. 43-50, Stirling. 8. Aspinall, R.J. & Pearson, D. (2000) Integrated geographical assessment of environmental condition in water catchments: Linking landscape ecology, environmental modelling and GIS. Journal of Environmental Management, 59, 299-319 9. Balling, R.J., Taber, J.T., Brown, M.R., & Day, K. (1999) Multiobjective urban planning ssing genetic algorithm. Journal of Urban Planning and Development, 125, 86-99. 10. Balzter, H., Braun, P.W., & Kohler, W. (1998) Cellular automata models for vegetation dynamics. Ecological Modelling, 107, 113-125. 11. Becker, A. & Pfutzner, B. (1987) EGMO-system approach and subroutines for river basin modeling. Seminario Internacional Hidrologia en Grandes Llanuras; sl, sd, 31, 125-141. 12. Benaman, J., Shoemaker, C.A., & Haith, D.A. (2005) Calibration and validation of aoil and water assessment tool on an agricultural watershed in upstate New York. Journal of Hydrologic Engineering, 10, 363. 13. Benson, B.J. & MacKenzie, M.D. (1995) Effects of sensor spatial resolution on landscape structure parameters. Landscape Ecology, 10, 113-120. 14. Beven, K.J., Calver, A., & Morris, E., eds. (1987) The institute of hydrology distributed model. Institute of Hydrology Report No.98, Wallingford, U.K. 15. Beven, K.J. & Kirkby, M.J. (1979) A physically-based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 23, 43-69. 16. Booth, D.B., Hartley, D., & Jackson, R. (2002) Forest cover, impervious-surface area, and the mitigation of stormwater impacts. Journal of the American Water Resources Association, 38, 835-845. 17. Borah, D.K. & Bera, M. (2003) Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases. Transactions of the ASAE, 46, 1553-1566. 18. Bormann, H. (2006) Impact of spatial data resolution on simulated catchment water balances and model performance of the multi-scale TOPLATS model. Hydrology and Earth System Sciences, 10, 165-179. 19. Briassoulis, H. (2000) Analysis of Land Use Change: Theoretical and Modeling Approaches Regional Research Institute, West Virginia University. 20. Brooks, K.N., Ffolliott, P.F., Gregersen, H.M., & DeBano, L.F. (2003) Hydrology and the management of watersheds, 3rd edn. Blackwell Publishing. 21. Brown, L.C. & Barnwell Jr, T.O. (1987) The enhanced stream water quality models QUAL2E and QUAL2EUNCAS: documentation and user manual. EPA document EPA/600/3‐87/007. USEPA Athens, GA. 22. Buyantuyev, A. & Wu, J. (2007) Effects of thematic resolution on landscape pattern analysis. Landscape Ecology, 22, 7-13. 23. Castella, J.C. & Verburg, P.H. (2007) Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam. Ecological Modelling, 202, 410-420. 24. Costanza, R., Sklar, F.H., & Day Jr, J.W. (1986) Modeling spatial and temporal succession in the Atchafalaya/Terrebonne Marsh/estuarine complex in South Louisiana. Estuarine Variability, 387-404. 25. Cushman, S.A., McGarigal, K., & Neel, M.C. (2008) Parsimony in landscape metrics: Strength, universality, and consistency. Ecological Indicators. 26. Di Luzio, M., Srinivasan, R., & Arnold, J.G. (2004) A GIS-coupled hydrological model system for the watershed assessment of agricultural nonpoint and point sources of pollution. Transactions in GIS, 8, 113-136. 27. Dunn, S.M., Mc Alister, E., & Ferrier, R.C. (1998) Development and application of a distributed catchment-scale hydrological model for the River Ythan, NE Scotland. Hydrological Processes, 12, 401-416. 28. Eastman, R. (1999) Guide to GIS and image processing. Clark University, Worcester, MA. 29. Eckhardt, K., Breuer, L., & Frede, H.G. (2003) Parameter uncertainty and the significance of simulated land use change effects. Journal of Hydrology, 273, 164-176. 30. Eckhardt, K., Haverkamp, S., Fohrer, N., & Frede, H.G. (2002) SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Physics and Chemistry of the Earth, 27, 641-644. 31. Environmental Protection Agency (EPA) (1994). Landscape Monitoring and Assessment Research Plan. US EPA 620/R-94/009. 32. Farina, A. (2000) Principles and methods in landscape ecology. Kluwer Academic Publishers, Dordrecht, Netherlands. 33. Flanagan, D.C. & Nearing, M.A., eds. (1995) USDA-Water Erosion Prediction Project (WEPP) Hillslope Profile and Watershed Model Documentation. NSERL Report No. 10, National Soil Erosion Research Laboratory, USDA-Agricultural Research Service, West Lafayette, Indiana. 34. Fohrer, N., Moller, D., & Steiner, N. (2002) An interdisciplinary modelling approach to evaluate the effects of land use change. Physics and Chemistry of the Earth, 27, 655-662. 35. Forman, R.T.T. (1995) Land mosaics: The ecology of landscapes and regions. Cambridge University Press. 36. Forman, R.T.T. & Godron, M. (1986) Landscape ecology. John Wiley. 37. Gassman, P.W., Reyes, M.R., Green, C.H., & Arnold, J.G. (2007) The soil and water assessment tool: historical development, applications, and future research directions. American Society of Agricultural and Biological Engineers, 50, 1211-1250. 38. Gilbert, N. & Troitzsch, K.G. (1999) Simulation for the social scientist. Open University Press. Buckingham, UK. 39. GLP (2005) Science Plan and Implementation Strategy. IGBP Report No. 53/IHDP Report No. 19. IGBP Secretariat, Stockholm. 64pp. 40. Green, W.H. & Ampt, G.A. (1911) Studies on soil physics, 1. The flow of air and water through soils. J. Agric. Sci, 4, 1-24. 41. Griensven, A. & Bauwens, W. (2003) Multiobjective autocalibration for semidistributed water quality models. Water Resources Research, 39, 1348. 42. Gronewold, A. & Sonnenschein, M. (1998) Event-based modelling of ecological systems with asynchronous cellular automata. Ecological Modelling, 108, 37-52. 43. Haines-Young, R. & Chopping, M. (1996) Quantifying landscape structure: a review of landscape indices and their application to forested landscapes. Progress in Physical Geography, 20, 418. 44. Hall, C.A.S., Tian, H., Qi, Y., Pontius, G., & Cornell, J. (1995) Modelling spatial and temporal patterns of tropical land use change. Journal of Biogeography, 22, 753-757. 45. Hargreaves, G.L., Hargreaves, G.H., & Riley, J.P. (1985) Agricultural benefits for Senegal river basin. Journal of Irrigation and Drainage Engineering, 111, 113-124. 46. Haverkamp, S., Fohrer, N., & Frede, H.G. (2005) Assessment of the effect of land use patterns on hydrologic landscape functions: a comprehensive GIS-based tool to minimize model uncertainty resulting from spatial aggregation. Hydrological Processes, 19, 715-727. 47. Hokit, D.G., Stith, B.M., & Branch, L.C. (1999) Effects of landscape structure in Florida scrub: a population perspective. Ecological Applications, 9, 124-134. 48. Hulshoff, R.M. (1995) Landscape indices describing a Dutch landscape. Landscape Ecology, 10, 101-111. 49. Hundecha, Y. & Bardossy, A. (2004) Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. Journal of Hydrology, 292, 281-295. 50. Izaurralde, R.C., Williams, J.R., McGill, W.B., Rosenberg, N.J., & Jakas, M.C.Q. (2006) Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecological Modelling, 192, 362-384. 51. Jantz, C.A. & Goetz, S.J. (2005) Analysis of scale dependencies in an urban land-use-change model. International Journal of Geographical Information Science, 19, 217-241. 52. Jayakrishnan, R., Srinivasan, R., Santhi, C., & Arnold, J.G. (2005) Advances in the application of the SWAT model for water resources management. Hydrological Processes, 19, 749-762. 53. Jenerette, G.D. & Wu, J. (2001) Analysis and simulation of land-use change in the central Arizona–Phoenix region, USA. Landscape Ecology, 16, 611-626. 54. Kim, Y., Engel, B.A., Lim, K.J., Larson, V., & Duncan, B. (2002) Runoff impacts of land-use change in Indian River Lagoon watershed. Journal of Hydrologic Engineering, 7, 245. 55. Knisel, W.G. (1980). CREAMS: a field scale model for chemicals, runoff, and erosion from agricultural management systems. USDA Conservation research report No.26, Washington D.C. 56. Kok, K., Farrow, A., Veldkamp, A., & Verburg, P.H. (2001) A method and application of multi-scale validation in spatial land use models. Agriculture, Ecosystems and Environment, 85, 223-238. 57. Kok, K. & Veldkamp, A. (2001) Evaluating impact of spatial scales on land use pattern analysis in Central America. Agriculture, Ecosystems & Environment, 85, 205-221. 58. Krysanova, V., Muller-Wohlfeil, D.I., & Becker, A. (1998) Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecological Modelling, 106, 261-289. 59. Lambin, E.F. (1997) Modelling and monitoring land-cover change processes in tropical regions. Progress in Physical Geography, 21, 375. 60. Lausch, A. & Herzog, F. (2002) Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Ecological Indicators, 2, 3-15. 61. Lee, R.G., Flamm, R., Turner, M.G., Bledsoe, C., Chandler, P., DeFerrari, C., Gottfried, R., Naiman, R.J., Schumaker, N., & Wear, D. (1992) Integrating sustainable development and environmental vitality: A landscape ecology approach. Watershed management: Balancing sustainability and environmental change, 499–521. 62. Leitão, A.B. & Ahern, J. (2002) Applying landscape ecological concepts and metrics in sustainable landscape planning. Landscape and Urban Planning, 59, 65-93. 63. Leitão, A.B., Miller, J., Ahern, J., & McGarigal, K. (2006) Measuring landscapes: A planner's handbook. Island Press, Washington D.C., U.S.A. 64. Leonard, R.A., Knisel, W.G., & Still, D.A. (1987) GLEAMS: Groundwater loading effects of agricultural management systems. Transaction of the ASAE, 30, 1403-1418. 65. Lesschen, J.P., Verburg, P.H., & Staal, S.J. (2005) Statistical methods for analysing the spatial dimension of changes in land use and farming systems. Nairobi and Wageningen, ILRI and Wageningen University. 66. Li, B.L. (2000) Fractal geometry applications in description and analysis of patch patterns and patch dynamics. Ecological Modelling, 132, 33-50. 67. Li, H. & Reynolds, J.F. (1997) Modeling effects of spatial pattern, drought, and grazing on rates of rangeland degradation: a combined Markov and cellular automaton approach. Scale in Remote Sensing and GIS, 211–230. 68. Lin, F.T., Lin, S.H., & Lee, D.T. (2004) A cellular automata based urban development simulation for Taipei metropolitan area. In Proceedings of Association of European Schools of Planning, Grenoble University, France. 69. Lin, Y.P., Hong, N.M., Wu, P.J., Wu, C.F., & Verburg, P.H. (2007) Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in Northern Taiwan. Landscape and Urban Planning, 80, 111-126. 70. Lin, Y.P., Wu, P.J., & Hong, N.M. (2008) The effects of changing the resolution of land-use modeling on simulations of land-use patterns and hydrology for a watershed land-use planning assessment in Wu-Tu, Taiwan. Landscape and Urban Planning. Avalible online. 71. Ludeke, A.K., Maggio, R.C., & Reid, L.M. (1990) An analysis of anthropogenic deforestation using logistic regression and GIS. Journal of Environmental Management, 31, 247-259. 72. Macleod, C.J.A., Scholefield, D., & Haygarth, P.M. (2007) Integration for sustainable catchment management. Science of the Total Environment, 373, 591-602. 73. McGarigal, K. & Marks, B.J. (1995) FRAGSTATS: Spatial pattern analysis program for quantifying landscape sructure. Portland, Or.: US Dept. of Agriculture, Forest Service, Pacific Northwest Research Station. 74. Mertens, B. & Lambin, E.F. (1997) Spatial modelling of deforestation in southern Cameroon Spatial disaggregation of diverse deforestation processes. Applied Geography, 17, 143-162. 75. Miller, S.N., Kepner, W.G., Mehaffey, M.H., Hernandez, M., Miller, R.C., Goodrich, D.C., Devonald, K., Heggem, D.T., & Miller, W.P. (2002) Integrating landscape assessment and hydrologic modeling for land cover change analysis. Journal of the American Water Resources Association, 38, 915-929. 76. Monteith, J.L. (1965) Evaporation and the environment. In The state and movement of water in living organisms. 19th Symposia of the society for experimental biology. Cambridge University Press, London, U.K. 77. Moran, E., Ojima, D., Buchmann, N., Canadell, J., Graumlich, L., Jackson, R., Jaramillo, V., Lavorel, S., Leadly, P., & Matson, P. (2005). GLP (2005) Science Plan and Implementation Strategy. IGPB Report No. 53/IHDP Report No. 19, EGBP Secretariat Stockholm. 78. Muleta, M.K., Pe, J.W.N., & Pe, E.G.B. (2007) Sensitivity of a distributed watershed simulation model to spatial scale. Journal of Hydrologic Engineering, 12, 163. 79. Musick, H.B. & Grover, H.D. (1991) Image textural measures as indices of landscape pattern. In: Quantitative methods in landscape ecology. Ecologycal Studies 82, Analysis and Synthesis (ed. by M.G. Turner & R.H. Gardner). Springer-Verlag, New York. 80. Naveh, Z. & Lieberman, A.S. (1994) Landscape ecology: Theory and application., 2nd edn. Springer-Verlag Press, New York. 81. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R., & King, K.W. (2002) Soil and water sssessment tool theoretical documentation version 2000. GSWRL Report, 02-01. 82. O'Neill, R.V., Hunsaker, C.T., Timmins, S.P., Jackson, B.L., Jones, K.B., Riitters, K.H., & Wickham, J.D. (1996) Scale problems in reporting landscape pattern at the regional scale. Landscape Ecology, 11, 169-180. 83. O’Sullivan, D. (2001) Graph-cellular automata: a generalised discrete urban and regional model. Environment and Planning B: Planning and Design, 28, 687-705. 84. Overmars, K.P., de Groot, W.T., & Huigen, M.G.A. (2007) Comparing inductive and deductive modeling of land use decisions: Principles, a model and an illustration from the Philippines. Human Ecology, 35, 439-452. 85. Overmars, K.P., de Koning, G.H.J., & Veldkamp, A. (2003) Spatial autocorrelation in multi-scale land use models. Ecological Modelling, 164, 257-270. 86. Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J., & Deadman, P. (2003) Multi-agent systems for the simulation of land-use and land-cover change: A review. Annals of the Association of American Geographers, 93, 314-337. 87. Priestley, C.H.B. & Taylor, R.J. (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81-92. 88. Pukkala, T. & Kurttila, M. (2005) Examining the performance of six heuristic optimisation techniques in different forest planning problems. Silva Fennica, 39, 67-80. 89. Qi, Y. & Wu, J. (1996) Effects of changing spatial resolution on the results of landscape pattern analysis using spatial autocorrelation indices. Landscape Ecology, 11, 39-49. 90. Refsgaard, J.C. & Storm, B. (1995) MIKE SHE. In: Computer models of watershed hydrology (ed. by V.P. Singh). Water Resources Publications, Littleton, Colo. 91. Riitters, K.H., O'Neill, R.V., Hunsaker, C.T., Wickham, J.D., Yankee, D.H., Timmins, S.P., Jones, K.B., & Jackson, B.L. (1995) A factor analysis of landscape pattern and structure metrics. Landscape Ecology, 10, 23-39. 92. Saura, S. (2004) Effects of remote sensor spatial resolution and data aggregation on selected fragmentation indices. Landscape Ecology, 19, 197-209. 93. Schröder, B. (2006) Pattern, process, and function in landscape ecology and catchment hydrology- how can quantitative landscape ecology support predictions in ungauged basins? Hydrology and Earth System Sciences, 10, 967-979. 94. Singh, V.P. & Woolhiser, D.A. (2002) Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering, 7, 270-292. 95. Sklar, F.R. & Costanza, R. (1991) The development of dynamic spatial models for landscape ecology: A review and prognosis. New York, 239-288. 96. Southworth, F., Dale, V.H., & O’Neill, R.V. (1991) Contrasting patterns of land use in Rondonia, Brazil: simulating the effects on carbon release. International Social Science Journal, 130, 681-798. 97. Spruill, C.A., Workman, S.R., & Taraba, J.L. (2000) Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. Transactions of the ASAE, 43, 1431-1439. 98. Tischendorf, L. (2001) Can landscape indices predict ecological processes consistently? Landscape Ecology, 16, 235-254. 99. Tischendorf, L. & Fahrig, L. (2000) On the usage and measurement of landscape connectivity. Oikos, 90, 7. 100. Trani, M.K. & Giles, J.R.H. (1999) An analysis of deforestation: Metrics used to describe pattern change. Forest Ecology and Management, 114, 459-470. 101. Tripathi, M.P., Panda, R.K., & Raghuwanshi, N.S. (2005) Development of effective management plan for critical subwatersheds using SWAT model. Hydrological Processes, 19, 809-826. 102. Troll, C. (1939) Luftbildplan and okologische Bodenforschung. pp. 241-298. Z. Ges. Erdkunde, Berlin. 103. Turner, B.L., Skole, D., & Sanderson, S. (1995). Land-use and Land-cover Change: Science/research Plan, International Geosphere-Biosphere Programme Stockholm. 104. Turner, M.G. (1989) Landscape Ecology: The Effect of Pattern on Process. Annual Review of Ecology and Systematics, 20, 171-197. 105. Turner, M.G. (1990) Spatial and temporal analysis of landscape patterns. Landscape Ecology, 4, 21-30. 106. Turner, M.G., Gardner, R.H., & O'Neill, R.V. (2001) Landscape ecology in theory and practice: Pattern and process. Springer, New York. 107. Turner, M.G., O'Neill, R.V., Gardner, R.H., & Milne, B.T. (1989) Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecology, 3, 153-162. 108. Veldkamp, A. & Fresco, L.O. (1996) CLUE: a conceptual model to study the Conversion of Land Use and its Effects. Ecological Modelling, 85, 253-270. 109. Veldkamp, A., Verburg, P.H., Kok, K., de Koning, G.H.J., Priess, J., & Bergsma, A.R. (2001) The need for scale sensitive approaches in spatially explicit land use change modeling. Environmental Modeling & Assessment, 6, 111-121. 110. Veldkamp, A. & Verburg, P.H. (2004) Modelling land use change and environmental impact. Joural of Environmental Management, 72, 1-3. 111. Venema, H.D., Calamai, P.H., & Fieguth, P. (2005) Forest structure optimization using evolutionary programming and landscape ecology metrics. European Journal of Operational Research, 164, 423-439. 112. Verburg, P.H. (2006) Simulating feedbacks in land use and land cover change models. Landscape Ecology, 21, 1171-1183. 113. Verburg, P.H., Schot, P.P., Dijst, M.J., & Veldkamp, A. (2004a) Land use change modelling: current practice and research priorities. GeoJournal, 61, 309-324. 114. Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S.S.A. (2002) Modeling the spatial dynamics of regional land use: The CLUE-S model. Environmental Management, 30, 391-405. 115. Verburg, P.H. & van Keulen, H. (1999) Exploring changes in the spatial distribution of livestock in China. Agricultural Systems, 62, 51-67. 116. Verburg, P.H., Veldkamp, A., Engelsman, W., van Zalinge, R., van Mensvoort, M.E.F., & Overmars, K.P. (2004b) The use of models to assess the impact of land use change on ecological processes: case-studies of deforestation in SE Asia. In: Land use, nature conservation, and the stability of rainforest margins in Southeast Asia. (ed. by G. Gerold & M.G. Fremerey, E.). Springer-Verlag, Berlin. 117. Verburg, P.H., Veldkamp, T., Overmars, K., Lesschen, J.P., & Kok, K. (2004c) Manual for the CLUE-S model. 118. Weber, A., Fohrer, N., & Moller, D. (2001) Long-term land use changes in a mesoscale watershed due to socio-economic factors—effects on landscape structures and functions. Ecological Modelling, 140, 125-140. 119. Wickham, J.D. & Rhtters, K.H. (1995) Sensitivity of landscape metrics to pixel size. International Journal of Remote Sensing, 16, 3585-3594. 120. Wigmosta, M.S., Vail, L.W., & Lettenmaier, D.P. (1994) A distributed hydrology-vegetation model for complex terrain. Water Resources Research, 30, 1665-1680. 121. Wu, J. (2004) Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecology, 19, 125-138. 122. Wu, J. & Hobbs, R. (2002) Key issues and research priorities in landscape ecology: An idiosyncratic synthesis. Landscape Ecology, 17, 355-365. 123. Wu, J., Jones, K.B., Li, H., & Loucks, O.L., eds. (2006) Scaling and uncertainty analysis in ecology: Methods and applications. Springer, Dordrecht, the Netherlands. 124. Wu, J., Shen, W., Sun, W., & Tueller, P.T. (2002) Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecology, 17, 761-782. 125. Wurbs, R.A. (1998) Dissemination of generalized water resources models in the United States. Water international, 23, 190-198. 126. Yang, D., Herath, S., & Musiake, K. (1998) Development of a geomorphology-based hydrological model for large catchments. Annual Journal of Hydraulic Engineering, JSCE, 42, 169-174. 127. 丁志堅 (2002) 屏東平原土地利用變遷分析與模式建立. 國立台灣大學地理環境資源研究所博士論文. 128. 丁飛 & 潘劍君 (2007) 分佈式水文模型SWAT的發展與研究動態. 水土保持研究, 14, 33-37. 129. 王中根, 劉昌明, & 黃友波 (2003) SWAT 模型的原理, 結構及應用研究. 地理科學進展, 22, 79-86. 130. 吳振發 (2006) 土地利用變遷及景觀生態評估方法之建立. 國立台北大學都市計劃研究所博士論文. 131. 呂仲耿 (2001) 利用空間資訊探討水源涵養保安林地景變遷. 台灣大學森林研究所碩士論文. 132. 林裕彬 (2007) 建立整合性空間分佈模式於集水區生態水文規劃管理之研究. 行政院國科會期初報告. 133. 林裕彬, 吳振發, & 鄧東波 (2004) 景觀生態面指數分析汐止地區 1990 一 2001 年土地利用時空問鑲嵌特徵. 都市與計劃, 31, 239-268. 134. 林裕彬, 鄧東波, & 吳振發 (2001) 景觀生態計量方法於農業景觀生態系統之空間結構探討. 農業工程學報, 47, 74-91. 135. 孫志鴻 (2003). 國土規劃與土地區位之研究-總計畫:以台北都會區為例(II), 國科會專案研究計劃成果報告(NSC91-2621-Z-002-017), 台灣大學地理環境資源學系. 136. 張長義 (2000). 台灣北部海岸地區養殖土地利用變遷及環境衝擊之研究(二), 國科會專案研究計劃成果報告(NSC89-2621-Z-002-007), 台灣大學地理環境資源學系. 137. 賴進貴 (2000) 細胞自動機與地理資訊系統結合之初探研究. 中國地理學會會刊, 28, 109-126. 138. 鄔建國 (2003) 景觀生態學-格局, 過程, 尺度與等級 五南圖書出版公司, 台北. 139. 陳文福 & 戴梓卿 (1997) 應用迴歸法於都市邊緣山坡地土地利用變遷之偵測-以臺北市南港區山坡地為例. 水土保持學報, 29, 337-366. 140. 陳癸月 (2002) 蘭陽平原土地利用與海岸變遷關係之研究. 中國文化大學地學研究所碩士論文. 141. 陳敏華 (2007) 應用模擬退火法及景觀指數於集水區土地利用最佳化規劃. 國立臺灣大學生物環境系統工程學研究所碩士論文. 142. 黃書禮 & 蔡靜如 (2000) 臺北盆地土地利用變遷趨勢之研究. 都市與計劃, 27, 1-23. 143. 黃秋昊 & 蔡運龍 (2005) 國內幾種土地利用變化模型評述. 中國土地科學, 19, 25-30. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37288 | - |
| dc.description.abstract | 集水區具有涵養水源、水土保持、生態保育的功能,而集水區之土地利用為所有生態及環境系統之結構基礎,其影響集水區生態及環境系統之變化及永續力。國內目前對於土地資源、水資源的需求不斷增加,集水區在人為因素與自然因素的交互作用影響下,產生許多環境保全、資源保育的問題,故為維持水體水質品質、水資源及人民生命財產安全,集水區的規劃與管理已成為當前國土永續利用與管理之重要議題。因此藉由評估土地利用政策對於空間格局與水文量之影響,為當前集水區規劃與管理的重要課題。
本研究首先探討土地利用變遷之驅動力,運用土地利用變遷模式CLUE-s,模擬五堵集水區於不同管理政策下,在西元1999年至2020年間土地利用變化的情形,並以地理資訊系統軟體Arc View 3.0之Patch Analysis模組,計算且比較不同情境下的景觀生態指數變化,分析各土地利用變遷情境之格局及其生態意涵,比較不同管理情境下土地利用之格局變化,且整合水文模式SWAT,探討集水區管理政策對土地利用之影響,其反應至水文環境之水文量差異,此外,亦考量不同空間尺度對於土地利用與水文分析結果之影響。 研究結果顯示空間限制政策影響土地利用變遷之空間格局更甚於土地利用轉換政策,水文量之模擬亦受到不同的空間限制政策而有顯著影響。綜合景觀指數與水文量之模擬結果,若考量景觀生態面向,本研究建議結合農地釋出政策以及森林與山坡地限制開發的空間政策,以做為五堵集水區未來規劃管理之依據,若考量水資源管理面向,本研究建議結合農地釋出政策以及森林限制開發的空間政策於五堵集水區之規劃管理,而所使用之資料的網格大小則建議在100 m × 100 m為以內。 | zh_TW |
| dc.description.abstract | Watersheds conserve soil, water, and habitats; as a result, watersheds play an important role in ecology and environment. Land uses of watersheds are the base of ecology and environmental systems that can influence the variation and sustainability of watersheds. Developing an approach for simulating and assessing land use changes and their effects on land use patterns and hydrological processes at the watershed level is essential for land use and water resource planning and management.
This study provides a novel approach that combines a land use change model, landscape metrics and a watershed hydrological model with an analysis of impacts of future land use scenarios on land use pattern and hydrology. The proposed models are applied to assess the impacts of different land use scenarios that include various spatial and non-spatial policies in the Wu-Tu watershed. The objective of this study is to analyze the planning strategies and observe the scaling effects on both simulated land-use patterns and hydrological components for the study watershed. The results revealed that spatial constriction policies have more significant impacts than agriculture conversion policies on land use spatial pattern and simulated hydrological components. Considering both spatial patterns and simulated hydrological results: from the spatial perspective, this study recommends taking free-agriculture conversion policy and forest and slope area constriction policy as the planning strategy of the Wu-Tu watershed. From the hydrological perspective, however, this study recommends taking free-agriculture conversion policy and forest constriction policy. According to the results of spatial scale effect, the grain size of this study area should be smaller than 100 m × 100 m. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:23:28Z (GMT). No. of bitstreams: 1 ntu-97-R95622002-1.pdf: 1773813 bytes, checksum: 6d361df5a3812ff6234c01cdb7e9e050 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 謝誌 i
中文摘要 ii 英文摘要 iii 章節目錄 iv 圖目錄 vi 表目錄 viii 第一章 序論 1 第一節 研究緣起 1 第二節 研究目的 3 第三節 研究流程 4 第二章 文獻回顧 6 第一節 土地利用變遷與模擬 6 第二節 景觀生態分析 11 第三節 空間尺度 15 第四節 水文模式 18 第三章 研究方法 22 第一節 研究區域 22 第二節 土地利用模式(CLUEs) 24 第三節 土地利用模擬情境 29 第四節 景觀生態指數 35 第五節 水文模式(SAWT) 39 第四章 結果與討論 46 第一節 土地利用變遷模擬 46 第二節 土地利用格局變遷 50 第三節 集水區水文量模擬 60 第四節 土地利用相關政策 66 第五節 尺度對土地利用格局與水文模擬之影響 70 第五章 結論與建議 80 第一節 結論 80 第二節 後續研究建議 82 參考文獻 87 | |
| dc.language.iso | zh-TW | |
| dc.subject | 水文模式 | zh_TW |
| dc.subject | 土地利用 | zh_TW |
| dc.subject | 景觀生態指數 | zh_TW |
| dc.subject | 空間尺度影響 | zh_TW |
| dc.subject | landscape metrics | en |
| dc.subject | hydrological model | en |
| dc.subject | Land-use change | en |
| dc.subject | spatial scale | en |
| dc.title | 整合土地利用模式與水文模式於集水區景觀生態規劃管理 | zh_TW |
| dc.title | Integrating land use model and hydrological model for landscape ecology planning and management in watersheds | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張尊國,童慶斌,張康聰 | |
| dc.subject.keyword | 土地利用,景觀生態指數,水文模式,空間尺度影響, | zh_TW |
| dc.subject.keyword | Land-use change,landscape metrics,hydrological model,spatial scale, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-23 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
