Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37270
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉?睿,陳明汝
dc.contributor.authorYing-Ching Hungen
dc.contributor.author洪瑛璟zh_TW
dc.date.accessioned2021-06-13T15:23:00Z-
dc.date.available2013-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-23
dc.identifier.citationArnau, J., C. Lauritzen, G. E. Petersen, and J. Pedersen. 2006. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr. Purif. 48: 1-13.
Anish, R., M. S. Rahman, and M. Rao. 2006. Application of cellulases from an alkalothermophilic Thermomonospora ap. In biopolishing denims. Biotechnol. Bioeng. 96: 48-56.
Aristidou, A., and M. Penttilä. 2000. Metabolic engineering applications to renewable resource utilization. Curr. Opin. Biotechnol. 11: 187-198.
Bhat, M. K. 2000. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355-383.
Bickerstaff, G. F. 1997. Immobilization of enzymes and cells. Page 1-11 in Immobilization of enzymes and cells. G. F. Bickerstaf ed. Humana, Totowa, N.J
Brauns, F. E., and D. A. Brauns. 1960. The chemistry of lignin coveringthe literature for the years 1949-1958. Academic Press, New York, NY.
Chen, Y. L., T. Y. Tang, and K. J. Cheng. 2001A. Directed evolution to produce an alkalophilic variant from Neocallimastix patriciarum xylanase. Can. J. Microbiol. 47: 1088-1094.
Chen, J. L., L. C. Tsai, T. N. Wen, J. B. Tang, H. S. Yuan, and L. F. Shyur. 2001B. Directed mutagenesis of specific active site residues on Fibrobacter succinogenes 1,3-1,4-β-D-glucanase significantly affects catalysis and enzyme structural stability. J. Biol. Chem. 276: 17895-17901.
Chen, H. L., L. C. Tsai, S. S. Lin, H. S. Yuan, N. S. Yang, S. H. Lee, and L. F. Shyur. 2002. Mutagenesis of Trp54 and Trp203 residues on Fibrobacter Succinogenes 1,3-1,4-β-D-glucanase significantly affects catalytic activities of the enzyme. Biochemistry 41: 8759-8766.
Chiang, C. J., H. C. Chen, H. F. Kuo, Y. P. Chao, and T. C. Tzen. 2006. A simple and effective method to prepare immobilized enzymes using artificial oil bodies. Enz. Microbiol. Technol. 39: 1152-1158.
Chiang, C. J., H. C. Chen, Y. P. Chao, and T. C. Tzen. 2005. Efficient system of artificial oil bodies for functional expression and purification of recombinant nattokinase in Escherichia coli. J. Agric. Food Chem. 53: 4799-4804.
Chong, S., F. B. Mersha, D. G. Comb, M. E. Scott, D. Landry, L. M. Vence, F. B. Perler, J. Benner, R. B. Kucera, C. A. Hirvonen, J. J. Pelletier, H. Paulus, and M. Q. Xu. 1997. Single-column purification of free recombinant proteins using a self- cleavable affinity tag derived from a protein splicing element. Gene 192: 271-281.
Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23.
Gole, A., S. Vyas, S. Phadtare, A. Lachke, and M. Sastry. 2002. Studies on the formation of bioconjugates of Endoglucanase with colloidal gold. Colloid Surf. B Biointerfaces 25: 129-138.
Hudson, S., E. Magner, J. Cooney, B. K. Hodnett. 2005. Methodology for the immobilization of enzymes onto mesoporous materials. J. Phys. Chem. B 109: 19496-19506.
Jiang, Z. Q., X. T. Li, S. Q. Yang, L. T. Li, and Y. Li. 2006. Biobleach boosting effect of recombinant xylanase B from the hyperthermophilic Thermotoga maritime on wheat straw pulp. Appl. Microbiol. Biotechnol. 70: 65-71.
Joachim, K., R. Grasser, H. Pikor, and K. Vogel. 2002. Determination of xylanase, β-glucanase, and cellulose activity. Anal. Bioanal. Chem. 374: 80-87.
Lee R. L., Weimer P. J., W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577.
Lenting, H. B. M., and M. M. C. G. Warmoeskerken. 2001. Mechanism of interaction between cellulase action and applied shear force, an hypothesis. J. Biotechnol. 89: 217-226.
Li, C., M. Yoshimoto, K. Fukunaga, and K. Nakao. 2007. Characterization and immobilization of liposome-bound cellulose for hydrolysis of insoluble cellulose. Bioresour. Technol. 98: 1366-1372.
Lin, Y., and S. Tanaka. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69: 627-642.
Liu, J. H., L. B. Selinger, K. J. Cheng, K. A. Beauchemin, and M. M. Moloney. 1997. Plant seed oil-bodies as an immobilization matrix for a recombinant xylanase from the rumen fungus Neocallimastix patriciarum. Mol. Breed. 3: 463-470.
Lowry, O. H., N. J. Rosebrough, A. L. Farr, R. J. Randall. 1951. Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193: 256-275.
Minic, Z., and L. Jouanin. 2006. Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol. Biochem. 44: 435-449.
Mao, X., G. Guo, J. Huang, Z. Du, Z. Huang, L. Ma, P. Li, and L. Gu. 2006. A novel method to prepare chitosan powder and its application in cellulase immobilization. J. Chem. Technol. Biotechnol. 81: 189-195.
Pastor, F. I. J., O. Gallardo, J. Sanz-Aparicio, and P. Díaz. 2007. Xylanases: Molecular properties and applications. Page 65-82 in Industrial Enzymes. J. Polaina and A.P. MacCabe ed. Springer Netherlands, Dordrecht, Hollan.
Peng, C. C., C. F. Chen, J. H. Shyu, M. J. Chen, and T. C. Tzen. 2004. A system for purification of recombinant proteins in Escherichia coli via artificial oil bodies constituted with their oleosin-fused polypeptides. Biotechnology 111: 51-57.
Polizeli, M. L. T. M., A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591.
Roy, I., A. Gupta, S. K. Khare, V. S. Bisaria, M. N. Gupta. 2003. Immobilization of xylan-degrading enzymes from Melanocarpus albomyces IIS 68 on the smart polymer Eudragit L-100. Appl. Microbiol. Biotechnol. 61: 309-313.
Salemuddin, M. 1999. Bioaffinity based immobilization of enzymes. Volumn 64, page 203-226 in advances in biochemical engineering/biotechnology. A. Fiechter ed. Springer-Verlag, Berlin, Germiny.
Schülein, M. 2000. Protein engineering of cellulases. Biochim. Biophys. Acta 1543: 239-252.
Sitton, O. C., G. L. Foutch, N. L. Book, and J. L. Gaddy. 1979. Ethanol from agricultural residues. Chem. Eng. Prog. 75: 52-57.
Tan, S. S., D. Y. Li, Z. Q. Jiang, Y. P. Zhu, B. Shi, L. T. Li. 2008. Production of xylobiose from the autohydrolysis explosion liquor of corncob using Thermotoga maritima xylanase B (XynB) immobilized on nickel-chelated Eupergit C. Bioresour. Technol. 99: 200-204.
Teather, R. M. and J. D. Erfle. 1990. DNA sequence of a Fibrobacter succinogenes mixed-linkage β-glucanase (1,3-1,4-β-D-glucan 4-glucanohydrolase) gene. J. Bacteriol. 172: 3837-3841.
Thkayoshi, H. 1985. Biosynthesis and biodegradation of wood components. Page 16 in Eriksson, K. E., and T. M. Wood ed. Academic Press, Orlando, FL.
Tischer, W, and V. Kasche. 1999. Immobilized enzymes: Crystals or carriers? Tibtech August. 17: 326-335.
Tzen, T. C., and H. C. Huang. 1992. Surface structure and properties of plant seed oil bodies. J. Cell Biol. 117: 327-335.
Waugh, D. S. 2005. Making the most of affinity tags. Trends Biotechnol. 23: 316-320.
Wen, T. N., J. L. Chen, S. H. Lee, N. S. Yang, and L. F. Shyur. 2005. A truncated Fibrobacter succinogenes 1,3-1,4-β-D-glucanase with improved enzyme activity and thermotolerance. Biochemistry 44: 9197-9205.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37270-
dc.description.abstract由於聚木糖酶(xylanase)與聚葡醣酶(β-glucanase)對木質纖維素之水解能力,現已為工業上使用之兩大主要酵素族群。而近年來發展出來的人造油體(artificial oil body)系統,可同時視為一種酵素之固定化技術,及一種酵素的純化方法。因此,本研究擬嘗試利用此系統進行聚木糖酶與聚葡糖酶的固定化及純化。實驗中所使用之聚木糖酶與聚葡糖酶基因為xynCDBFV及1,3-1,4-β-D-glucan 4-glucanohydrolase,分別分離自瘤胃真菌Neocallimastix patriciarum及瘤胃細菌Fibrobacter succinogenes。首先,聚木糖酶與聚葡糖酶基因主要以intein為連接區域,融合至oleosin基因的胺基端,隨後誘導大腸桿菌過量表達此二融合蛋白質,並利用重組人造油體的過程進行酵素之固定化。然後再藉由反應曲面法(response surface methodology)及序列二次規畫法(sequential quadratic programming),獲得人造油體固定化聚木糖酶及聚葡糖酶之最適作用pH及溫度分別為pH 6.0、59℃及pH 8.8、39℃。在熱穩定性方面,人造油體固定化聚木糖酶於59℃培養120分鐘後,其活性仍維持在起始活性的60%;而人造油體固定化聚葡糖酶於40℃培養120分鐘後,其活性仍維持在起始活性的67%,但培養於50℃時,在20分鐘後活性就降至49%,120分鐘後則只剩10%。在重複使用性方面,人造油體固定化聚木糖酶使用9次後,活性為起始活性的70%;人造油體固定化聚葡糖酶在使用10次後,活性為起始活性的60%。另外,人造油體在加入1,4-dithiothreitol(DTT)後,確實可以誘導intein進行自我裂解,釋放出聚木糖酶及聚葡糖酶,且經活性電泳證實人造油體系統可純化出具有活性的聚木糖酶及聚葡糖酶。zh_TW
dc.description.abstractXylanases and cellulases are the two major groups of industrial enzymes due to their fibrolytic functions and the potential applications to a big range of industrial processes. These enzymes are produced by immobilization or purification techniques. One of the commendable techniques is called artificial oil body system, also called AOB system. During the previous years, the AOB system had been established and has provided as a novel method for enzyme immobilization and purification.
The objective of this study is to investigate the efficiency of immobilization and purification of the xylanase and β-glucanase by using the AOB system. The two target enzyme genes used in this study are xyn-CDBFV and 1,3-1,4-β-D-glucan 4- glucanohydrolase gene. The xyn-CDBFV is a xylanase gene from rumen fungus, Neocallimastix patriciarum, and the 1,3-1,4-β-D-glucan 4-glucanohydrolase gene is from rumen bacterium, Fibrobacter succinogenes. Both of the enzyme genes were first overexpressed in Escherichia coli as recombinant proteins fused to the N terminus of oleosin with intein as a linker. These two recombinant enzymes were then immobilized on AOB through the process of AOB reconstitution. Afterward, response surface methodology (RSM) was applied to identify the most optimal reaction condition of the AOB-immobilized xylanase and AOB-immobilized β-glucanase. As the results, the optimal reaction condition for the highest AOB-immobilized xylanase activity (3.93 U/mg of total protein) was observed at pH 6 and 59℃, whereas it for the highest AOB-immobilized β-glucanase activity (6.9 U/mg of total protein) was observed at pH 8.8 and 39℃. Additionally, AOB-immobilized xylanase retained 60% of its maximal activity after 120 minutes at 59℃; AOB-immobilized β-glucanase retain 67% of its maximal activity after 120 minutes at 40℃, but only retain 10% at 50℃. They could be recycled by brief centrifugation. After reusing nigh times, AOB-immobilized xylanase still retained more than 70% of the original activity; while the activity of AOB-immobilized β-glucanase dropped to 60% for reusing 10 times. In terms of purification, xylanase and β-glucanase could be released from AOB by inducing self-splicing of intein and centrifuging.
In this study, the results show that AOB system is an applicable method on immobilizing and purifying recombinant rumen microbial xylanase and β-glucanase. Through the system, the two enzymes could then possibly be applied to industrial purpose.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:23:00Z (GMT). No. of bitstreams: 1
ntu-97-R95626008-1.pdf: 3843972 bytes, checksum: f755a318f0a5e5406e065e857c331006 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要1
英文摘要2
第一章、序言4
第二章、文獻探討6
一、木質纖維素6
(一)植物細胞壁組成6
(二)纖維素6
(三)半纖維素6
二、纖維素酶之種類及其應用7
(一)纖維素酶之種類7
(二)纖維素酶之應用8
三、聚木糖酶之種類及其應用9
(一)聚木糖酶9
(二)聚木糖酶之應用10
四、酵素之純化與固定化11
(一)酵素之純化12
(二)酵素之固定化12
五、人造油體系統簡介14
第三章、材料與方法27
一、實驗材料27
(一)聚葡糖酶及聚木糖酶基因27
(二)載體27
(三)菌種27
(四)培養基27
(五)試藥27
(六)實驗儀器及器材29
二、實驗方法31
(一)聚木糖酶及聚葡糖酶表達質體之建構31
(二)XynCDBFV-intein-oleosin與1,3-1,4-β-D-glucan 4-glucanohydrolase-intein- oleosin兩種融合蛋白之過度表現32(三)聚木糖酶及聚葡糖酶固定至人造油體33
(四)聚丙烯醯胺膠體電泳33
(五)人造油體之穩定性34
(六)酵素活性測定34
(七)蛋白質定量35
(八)固定化酵素之最適作用pH値與溫度36
(九)固定化酵素之熱穩定性38
(十)固定化酵素之重複使用性39
(十一)聚葡糖酶及聚木糖酶之純化39
(十二)純化酵素活性分析40
(十三)聚丙烯醯胺膠體電泳活性染色40
第四章、結果與討論44
一、聚木糖酶及聚葡糖酶之固定化44
(一)聚木糖酶與聚葡糖酶之固定化44
(二)人造油體之穩定性45
二、固定酵素之最適作用pH値與溫度46
(一)pH值及溫度對酵素活性之影響46
(二)反應曲面法模式分析47
三、固定化酵素之熱穩定性50
(一)人造油體固定化聚木糖酶之熱穩定性50
(二)人造油體固定化聚葡糖酶之熱穩定性51
四、固定化酵素之重複使用性51
(一)人造油體固定化聚木糖酶之重複使用性51
(二)人造油體固定化聚葡糖酶之重複使用性51
五、聚木糖酶及聚葡糖酶之純化52
第五章、結論73
參考文獻75
作者小傳80
dc.language.isozh-TW
dc.subject人造油體zh_TW
dc.subject聚葡糖&#37238zh_TW
dc.subject聚木糖&#37238zh_TW
dc.subjectβ-glucanaseen
dc.subjectArtificial oil bodyen
dc.subjectxylanaseen
dc.title利用人造油體系統進行聚木糖酶及聚葡糖酶之固定化與純化zh_TW
dc.titleImmobilization and purification of xylanase and β-glucanase by using the artificial oil body systemen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林慶文,陳小玲,王政騰
dc.subject.keyword人造油體,聚木糖&#37238,聚葡糖&#37238,zh_TW
dc.subject.keywordArtificial oil body,xylanase,β-glucanase,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2008-07-23
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
3.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved