請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37262完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張淑媛(Sui-Yuan Chang) | |
| dc.contributor.author | Chun-Ting Su | en |
| dc.contributor.author | 蘇峻霆 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:22:48Z | - |
| dc.date.available | 2014-10-07 | |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-11 | |
| dc.identifier.citation | 1. Abu-Raddad, L. J., A. S. Magaret, C. Celum, A. Wald, I. M. Longini, Jr., S. G. Self, and L. Corey. 2008. Genital herpes has played a more important role than any other sexually transmitted infection in driving HIV prevalence in Africa. PLoS One 3:e2230.
2. Aizman, O., P. Uhlen, M. Lal, H. Brismar, and A. Aperia. 2001. Ouabain, a steroid hormone that signals with slow calcium oscillations. Proc Natl Acad Sci U S A 98:13420-4. 3. Baghian, A., and K. G. Kousoulas. 1993. Role of the Na+,K+ pump in herpes simplex type 1-induced cell fusion: melittin causes specific reversion of syncytial mutants with the syn1 mutation to Syn+ (wild-type) phenotype. Virology 196:548-56. 4. Bagrov, A. Y., O. V. Fedorova, J. L. Austin-Lane, R. I. Dmitrieva, and D. E. Anderson. 1995. Endogenous marinobufagenin-like immunoreactive factor and Na+, K+ ATPase inhibition during voluntary hypoventilation. Hypertension 26:781-8. 5. Balzarini, J., B. Degreve, G. Andrei, J. Neyts, M. Sandvold, F. Myhren, and E. de Clercq. 1998. Superior cytostatic activity of the ganciclovir elaidic acid ester due to the prolonged intracellular retention of ganciclovir anabolites in herpes simplex virus type 1 thymidine kinase gene-transfected tumor cells. Gene Therapy 5:419-26. 6. Batterson, W., D. Furlong, and B. Roizman. 1983. Molecular genetics of herpes simplex virus. VIII. further characterization of a temperature-sensitive mutant defective in release of viral DNA and in other stages of the viral reproductive cycle. J Virol 45:397-407. 7. Benetti, L., and B. Roizman. 2006. Protein kinase B/Akt is present in activated form throughout the entire replicative cycle of deltaU(S)3 mutant virus but only at early times after infection with wild-type herpes simplex virus 1. J Virol 80:3341-8. 8. Betz, U. A., R. Fischer, G. Kleymann, M. Hendrix, and H. Rubsamen-Waigmann. 2002. Potent in vivo antiviral activity of the herpes simplex virus primase-helicase inhibitor BAY 57-1293. Antimicrob Agents Chemother 46:1766-72. 9. Brand, G., G. F. Schiavano, E. Balestra, B. Tavazzi, C. F. Perno, and M. Magnani. 2001. The potency of acyclovir can be markedly different in different cell types. Life Sciences 69:1285-90. 10. Celum, C., A. Wald, J. Hughes, J. Sanchez, S. Reid, S. Delany-Moretlwe, F. Cowan, M. Casapia, A. Ortiz, J. Fuchs, S. Buchbinder, B. Koblin, S. Zwerski, S. Rose, J. Wang, and L. Corey. 2008. Effect of aciclovir on HIV-1 acquisition in herpes simplex virus 2 seropositive women and men who have sex with men: a randomised, double-blind, placebo-controlled trial. Lancet 371:2109-19. 11. Cheng, H. Y., T. C. Lin, C. M. Yang, K. C. Wang, L. T. Lin, and C. C. Lin. 2004. Putranjivain A from Euphorbia jolkini inhibits both virus entry and late stage replication of herpes simplex virus type 2 in vitro. J Antimicrob Chemother 53:577-83. 12. Cheshenko, N., B. Del Rosario, C. Woda, D. Marcellino, L. M. Satlin, and B. C. Herold. 2003. Herpes simplex virus triggers activation of calcium-signaling pathways. J Cell Biol 163:283-93. 13. Cheshenko, N., J. B. Trepanier, T. J. Segarra, A. O. Fuller, and B. C. Herold. HSV usurps eukaryotic initiation factor 3 subunit M for viral protein translation: novel prevention target. PLoS One 5:e11829. 14. Chono, K., K. Katsumata, T. Kontani, M. Kobayashi, K. Sudo, T. Yokota, K. Konno, Y. Shimizu, and H. Suzuki. ASP2151, a novel helicase-primase inhibitor, possesses antiviral activity against varicella-zoster virus and herpes simplex virus types 1 and 2. J Antimicrob Chemother 65:1733-41. 15. Cohen, M. S. 2004. HIV and sexually transmitted diseases: lethal synergy. Top HIV Med 12:104-7. 16. Crumpacker, C. S., and P. A. Schaffer. 2002. New anti-HSV therapeutics target the helicase-primase complex. Nat Med 8:327-8. 17. Crute, J. J., C. A. Grygon, K. D. Hargrave, B. Simoneau, A. M. Faucher, G. Bolger, P. Kibler, M. Liuzzi, and M. G. Cordingley. 2002. Herpes simplex virus helicase-primase inhibitors are active in animal models of human disease. Nat Med 8:386-91. 18. Crute, J. J., and I. R. Lehman. 1991. Herpes simplex virus-1 helicase-primase. Physical and catalytic properties. J Biol Chem 266:4484-8. 19. Danve-Szatanek, C., M. Aymard, D. Thouvenot, F. Morfin, G. Agius, I. Bertin, S. Billaudel, B. Chanzy, M. Coste-Burel, L. Finkielsztejn, H. Fleury, T. Hadou, C. Henquell, H. Lafeuille, M. E. Lafon, A. Le Faou, M. C. Legrand, L. Maille, C. Mengelle, P. Morand, F. Morinet, E. Nicand, S. Omar, B. Picard, B. Pozzetto, J. Puel, D. Raoult, C. Scieux, M. Segondy, J. M. Seigneurin, R. Teyssou, and C. Zandotti. 2004. Surveillance network for herpes simplex virus resistance to antiviral drugs: 3-year follow-up. J Clin Microbiol 42:242-9. 20. Deshpande, S. P., U. Kumaraguru, and B. T. Rouse. 2000. Why do we lack an effective vaccine against herpes simplex virus infections? Microbes Infect 2:973-8. 21. Dixon, R. A., and P. A. Schaffer. 1980. Fine-structure mapping and functional analysis of temperature-sensitive mutants in the gene encoding the herpes simplex virus type 1 immediate early protein VP175. J Virol 36:189-203. 22. Dodson, A. W., T. J. Taylor, D. M. Knipe, and D. M. Coen. 2007. Inhibitors of the sodium potassium ATPase that impair herpes simplex virus replication identified via a chemical screening approach. Virology 366:340-8. 23. Elion, G. B., P. A. Furman, J. A. Fyfe, P. de Miranda, L. Beauchamp, and H. J. Schaeffer. 1977. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci U S A 74:5716-20. 24. Everett, R. D. 2000. ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 22:761-70. 25. Everett, R. D., and J. Murray. 2005. ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection. J Virol 79:5078-89. 26. Everett, R. D., G. Sourvinos, C. Leiper, J. B. Clements, and A. Orr. 2004. Formation of nuclear foci of the herpes simplex virus type 1 regulatory protein ICP4 at early times of infection: localization, dynamics, recruitment of ICP27, and evidence for the de novo induction of ND10-like complexes. J Virol 78:1903-17. 27. Everett, R. D., G. Sourvinos, and A. Orr. 2003. Recruitment of herpes simplex virus type 1 transcriptional regulatory protein ICP4 into foci juxtaposed to ND10 in live, infected cells. J Virol 77:3680-9. 28. Farrell, M. J., A. T. Dobson, and L. T. Feldman. 1991. Herpes simplex virus latency-associated transcript is a stable intron. Proc Natl Acad Sci U S A 88:790-4. 29. Fields, B. N., D. M. Knipe, and P. M. Howley. 2007. Fields' virology, 5th ed. Wolters kluwer/Lippincott Williams & Wilkins, Philadelphia. 30. Gottlieb, S. S., A. C. Rogowski, M. Weinberg, C. M. Krichten, B. P. Hamilton, and J. M. Hamlyn. 1992. Elevated concentrations of endogenous ouabain in patients with congestive heart failure. Circulation 86:420-5. 31. Gupta, A., J. J. Gartner, P. Sethupathy, A. G. Hatzigeorgiou, and N. W. Fraser. 2006. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442:82-5. 32. Haas, M., H. Wang, J. Tian, and Z. Xie. 2002. Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J Biol Chem 277:18694-702. 33. Halford, W. P., C. D. Kemp, J. A. Isler, D. J. Davido, and P. A. Schaffer. 2001. ICP0, ICP4, or VP16 expressed from adenovirus vectors induces reactivation of latent herpes simplex virus type 1 in primary cultures of latently infected trigeminal ganglion cells. J Virol 75:6143-53. 34. Hamlyn, J. M., R. Ringel, J. Schaeffer, P. D. Levinson, B. P. Hamilton, A. A. Kowarski, and M. P. Blaustein. 1982. A circulating inhibitor of (Na+ + K+)ATPase associated with essential hypertension. Nature 300:650-2. 35. Haux, J. 1999. Digitoxin is a potential anticancer agent for several types of cancer. Med Hypotheses 53:543-8. 36. Hayashi, K., M. Kawauchi, C. Nakai, U. Sankawa, H. Seto, and T. Hayashi. 2001. Characterization of inhibitory action of concanamycins against herpes simplex virus. Antivir Chem Chemother 12:51-9. 37. Hershey, J. W. B., M. Mathews, and N. Sonenberg. 2000. Translational control of gene expression, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 38. Hinnebusch, A. G. 2006. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci 31:553-62. 39. Hoffmann, H. H., P. Palese, and M. L. Shaw. 2008. Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C activity. Antiviral Res 80:124-34. 40. Holzinger, F., C. Frick, and M. Wink. 1992. Molecular basis for the insensitivity of the Monarch (Danaus plexippus) to cardiac glycosides. FEBS Lett 314:477-80. 41. Honess, R. W., and B. Roizman. 1974. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol 14:8-19. 42. Hudson, C. P. 2008. Effect of aciclovir on HIV-1 acquisition in HSV-2-positive patients. Lancet 372:1298; author reply 1298-9. 43. Hwang, C. B., K. L. Ruffner, and D. M. Coen. 1992. A point mutation within a distinct conserved region of the herpes simplex virus DNA polymerase gene confers drug resistance. J Virol 66:1774-6. 44. Irurzun, A., and L. Carrasco. 2001. Entry of poliovirus into cells is blocked by valinomycin and concanamycin A. Biochemistry 40:3589-600. 45. Jones, P. C., and B. Roizman. 1979. Regulation of herpesvirus macromolecular synthesis. VIII. The transcription program consists of three phases during which both extent of transcription and accumulation of RNA in the cytoplasm are regulated. J Virol 31:299-314. 46. Kang, W., R. Mukerjee, J. J. Gartner, A. G. Hatzigeorgiou, R. M. Sandri-Goldin, and N. W. Fraser. 2006. Characterization of a spliced exon product of herpes simplex type-1 latency-associated transcript in productively infected cells. Virology 356:106-14. 47. Khundmiri, S. J., M. A. Metzler, M. Ameen, V. Amin, M. J. Rane, and N. A. Delamere. 2006. Ouabain induces cell proliferation through calcium-dependent phosphorylation of Akt (protein kinase B) in opossum kidney proximal tubule cells. Am J Physiol Cell Physiol 291:C1247-57. 48. Kleymann, G., R. Fischer, U. A. Betz, M. Hendrix, W. Bender, U. Schneider, G. Handke, P. Eckenberg, G. Hewlett, V. Pevzner, J. Baumeister, O. Weber, K. Henninger, J. Keldenich, A. Jensen, J. Kolb, U. Bach, A. Popp, J. Maben, I. Frappa, D. Haebich, O. Lockhoff, and H. Rubsamen-Waigmann. 2002. New helicase-primase inhibitors as drug candidates for the treatment of herpes simplex disease. Nat Med 8:392-8. 49. Krummenacher, C., J. M. Zabolotny, and N. W. Fraser. 1997. Selection of a nonconsensus branch point is influenced by an RNA stem-loop structure and is important to confer stability to the herpes simplex virus 2-kilobase latency-associated transcript. J Virol 71:5849-60. 50. Labeyrie, E., and S. Dobler. 2004. Molecular adaptation of Chrysochus leaf beetles to toxic compounds in their food plants. Mol Biol Evol 21:218-21. 51. Ledbetter, M. L., and C. L. Gatto. 2003. Concentrations of ouabain that prevent intercellular communication do not affect free calcium levels in cultured fibroblasts. Cell Biochem Funct 21:363-70. 52. Leopardi, R., N. Michael, and B. Roizman. 1995. Repression of the herpes simplex virus 1 alpha 4 gene by its gene product (ICP4) within the context of the viral genome is conditioned by the distance and stereoaxial alignment of the ICP4 DNA binding site relative to the TATA box. J Virol 69:3042-8. 53. Leopardi, R., P. L. Ward, W. O. Ogle, and B. Roizman. 1997. Association of herpes simplex virus regulatory protein ICP22 with transcriptional complexes containing EAP, ICP4, RNA polymerase II, and viral DNA requires posttranslational modification by the U(L)13 proteinkinase. J Virol 71:1133-9. 54. Levi, A. J., M. R. Boyett, and C. O. Lee. 1994. The cellular actions of digitalis glycosides on the heart. Prog Biophys Mol Biol 62:1-54. 55. Lindenmayer, G. E., A. Schwartz, and H. K. Thompson, Jr. 1974. A kinetic description for sodium and potassium effects on (Na+ plus K+)-adenosine triphosphatase: a model for a two-nonequivalent site potassium activation and an analysis of multiequivalent site models for sodium activation. J Physiol 236:1-28. 56. Ling, J., and D. Soll. Severe oxidative stress induces protein mistranslation through impairment of an aminoacyl-tRNA synthetase editing site. Proc Natl Acad Sci U S A 107:4028-33. 57. Lingrel, J. B. 1992. Na,K-ATPase: isoform structure, function, and expression. J Bioenerg Biomembr 24:263-70. 58. Lisco, A., and C. Vanpouille. 2008. HSV-2 suppression and the incidence of HIV. N Engl J Med 359:535; author reply 535. 59. Liu, J., R. Kesiry, S. M. Periyasamy, D. Malhotra, Z. Xie, and J. I. Shapiro. 2004. Ouabain induces endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells by a clathrin-dependent mechanism. Kidney Int 66:227-41. 60. Liu, L., X. Zhao, S. V. Pierre, and A. Askari. 2007. Association of PI3K-Akt signaling pathway with digitalis-induced hypertrophy of cardiac myocytes. Am J Physiol Cell Physiol 293:C1489-97. 61. MacLeod, I. J., and T. Minson. Binding of herpes simplex virus type-1 virions leads to the induction of intracellular signalling in the absence of virus entry. PLoS One 5:e9560. 62. Mahiane, S. G., C. Legeai, D. Taljaard, A. Latouche, A. Puren, A. Peillon, J. Bretagnolle, P. Lissouba, E. P. Nguema, E. Gassiat, and B. Auvert. 2009. Transmission probabilities of HIV and herpes simplex virus type 2, effect of male circumcision and interaction: a longitudinal study in a township of South Africa. Aids 23:377-383. 63. Manunta, P., B. P. Hamilton, and J. M. Hamlyn. 2006. Salt intake and depletion increase circulating levels of endogenous ouabain in normal men. Am J Physiol Regul Integr Comp Physiol 290:R553-9. 64. Manunta, P., P. Stella, R. Rivera, D. Ciurlino, D. Cusi, M. Ferrandi, J. M. Hamlyn, and G. Bianchi. 1999. Left ventricular mass, stroke volume, and ouabain-like factor in essential hypertension. Hypertension 34:450-6. 65. Morfin, F., and D. Thouvenot. 2003. Herpes simplex virus resistance to antiviral drugs. J Clin Virol 26:29-37. 66. Muroi, M., K. Suehara, H. Wakusawa, K. Suzuki, T. Sato, T. Nishimura, N. Otake, and A. Takatsuki. 1996. Novel blockade of cell surface expression of virus glycoproteins by leucinostatin A. J Antibiot (Tokyo) 49:1119-26. 67. Neumar, R. W., D. J. DeGracia, L. L. Konkoly, J. I. Khoury, B. C. White, and G. S. Krause. 1998. Calpain mediates eukaryotic initiation factor 4G degradation during global brain ischemia. J Cereb Blood Flow Metab 18:876-81. 68. Othumpangat, S., M. Kashon, and P. Joseph. 2005. Eukaryotic translation initiation factor 4E is a cellular target for toxicity and death due to exposure to cadmium chloride. J Biol Chem 280:25162-9. 69. Park, R., P. E. Giza, D. E. Mold, and R. C. Huang. 2003. Inhibition of HSV-1 replication and reactivation by the mutation-insensitive transcription inhibitor tetra-O-glycyl-nordihydroguaiaretic acid. Antiviral Research 58:35-45. 70. Paz-Bailey, G., M. Ramaswamy, S. J. Hawkes, and A. M. Geretti. 2007. Herpes simplex virus type 2: epidemiology and management options in developing countries. Sex Transm Infect 83:16-22. 71. Pedersen, P. L., and E. Carafoli. 1987. Ion motive ATPases. I. Ubiquity, properties, and significance to cell function Trends in Biochemical Sciences 12:146-150. 72. Perng, G. C., C. Jones, J. Ciacci-Zanella, M. Stone, G. Henderson, A. Yukht, S. M. Slanina, F. M. Hofman, H. Ghiasi, A. B. Nesburn, and S. L. Wechsler. 2000. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287:1500-3. 73. Post, L. E., S. Mackem, and B. Roizman. 1981. Regulation of alpha genes of herpes simplex virus: expression of chimeric genes produced by fusion of thymidine kinase with alpha gene promoters. Cell 24:555-65. 74. Preston, C. M. 1979. Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild-type virus or the temperature-sensitive mutant tsK. J Virol 29:275-84. 75. Preston, C. M., and S. Efstathiou. 2007. Molecular basis of HSV latency and reactivation. 76. Price, E. M., and J. B. Lingrel. 1988. Structure-function relationships in the Na,K-ATPase alpha subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme. Biochemistry 27:8400-8. 77. Reno, J. M., L. F. Lee, and J. A. Boezi. 1978. Inhibition of herpesvirus replication and herpesvirus-induced deoxyribonucleic acid polymerase by phosphonoformate. Antimicrob Agents Chemother 13:188-92. 78. Rezuchova, I., M. Kudelova, V. Durmanova, A. Vojvodova, J. Kosovsky, and J. Rajcani. 2003. Transcription at early stages of herpes simplex virus 1 infection and during reactivation. Intervirology 46:25-34. 79. Rock, D. L., A. B. Nesburn, H. Ghiasi, J. Ong, T. L. Lewis, J. R. Lokensgard, and S. L. Wechsler. 1987. Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol 61:3820-6. 80. Roizman, B., H. Gu, and G. Mandel. 2005. The first 30 minutes in the life of a virus: unREST in the nucleus. Cell Cycle 4:1019-21. 81. Russell, W. C. 1962. A sensitive and precise plaque assay for herpes virus. Nature 195:1028-9. 82. Sacks, S. L., R. J. Wanklin, D. E. Reece, K. A. Hicks, K. L. Tyler, and D. M. Coen. 1989. Progressive esophagitis from acyclovir-resistant herpes simplex. Clinical roles for DNA polymerase mutants and viral heterogeneity? Ann Intern Med 111:893-9. 83. Santana, L. F., A. M. Gomez, and W. J. Lederer. 1998. Ca2+ flux through promiscuous cardiac Na+ channels: slip-mode conductance. Science 279:1027-33. 84. Sasadeusz, J. J., F. Tufaro, S. Safrin, K. Schubert, M. M. Hubinette, P. K. Cheung, and S. L. Sacks. 1997. Homopolymer mutational hot spots mediate herpes simplex virus resistance to acyclovir. J Virol 71:3872-8. 85. Schachtele, S. J., S. Hu, M. R. Little, and J. R. Lokensgard. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2. J Neuroinflammation 7:35. 86. Schaeffer, H. J., L. Beauchamp, P. de Miranda, G. B. Elion, D. J. Bauer, and P. Collins. 1978. 9-(2-hydroxyethoxymethyl) guanine activity against viruses of the herpes group. Nature 272:583-5. 87. Shen, W., M. Sa e Silva, T. Jaber, O. Vitvitskaia, S. Li, G. Henderson, and C. Jones. 2009. Two small RNAs encoded within the first 1.5 kilobases of the herpes simplex virus type 1 latency-associated transcript can inhibit productive infection and cooperate to inhibit apoptosis. J Virol 83:9131-9. 88. Shenton, D., J. B. Smirnova, J. N. Selley, K. Carroll, S. J. Hubbard, G. D. Pavitt, M. P. Ashe, and C. M. Grant. 2006. Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J Biol Chem 281:29011-21. 89. Sherman, G., J. Gottlieb, and M. D. Challberg. 1992. The UL8 subunit of the herpes simplex virus helicase-primase complex is required for efficient primer utilization. J Virol 66:4884-92. 90. Shull, G. E., A. Schwartz, and J. B. Lingrel. 1985. Amino-acid sequence of the catalytic subunit of the (Na+ + K+)ATPase deduced from a complementary DNA. Nature 316:691-5. 91. Skou, J. C. 1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394-401. 92. Skou, J. C. 1988. The Na,K-pump. Methods Enzymol 156:1-25. 93. Spector, F. C., L. Liang, H. Giordano, M. Sivaraja, and M. G. Peterson. 1998. Inhibition of herpes simplex virus replication by a 2-amino thiazole via interactions with the helicase component of the UL5-UL8-UL52 complex. J Virol 72:6979-87. 94. Stevens, J. G., E. K. Wagner, G. B. Devi-Rao, M. L. Cook, and L. T. Feldman. 1987. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235:1056-9. 95. Storey, N., D. Latchman, and S. Bevan. 2002. Selective internalization of sodium channels in rat dorsal root ganglion neurons infected with herpes simplex virus-1. J Cell Biol 158:1251-62. 96. Su, C. T. 2004. Screening of Anti-HSV Agents and Study of Their Antiviral Mechanisms. Master thesis. National Taiwan University. 97. Su, C. T., J. T. Hsu, H. P. Hsieh, P. H. Lin, T. C. Chen, C. L. Kao, C. N. Lee, and S. Y. Chang. 2008. Anti-HSV activity of digitoxin and its possible mechanisms. Antiviral Res 79:62-70. 98. Tang, S., A. S. Bertke, A. Patel, K. Wang, J. I. Cohen, and P. R. Krause. 2008. An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. Proc Natl Acad Sci U S A 105:10931-6. 99. Tang, S., A. Patel, and P. R. Krause. 2009. Novel less-abundant viral microRNAs encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating ICP34.5 and ICP0 mRNAs. J Virol 83:1433-42. 100. Tobin, T., R. Henderson, and A. K. Sen. 1972. Species and tissue differences in the rate of dissociation of ouabain from (Na+ + K+)-ATPase. Biochim Biophys Acta 274:551-5. 101. Umbach, J. L., M. F. Kramer, I. Jurak, H. W. Karnowski, D. M. Coen, and B. R. Cullen. 2008. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454:780-3. 102. Wachsman, M. B., V. Castilla, A. P. de Ruiz Holgado, R. A. de Torres, F. Sesma, and C. E. Coto. 2003. Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Res 58:17-24. 103. Wade, O. L. 1986. Digoxin 1785-1985. I. Two hundred years of digitalis. J Clin Hosp Pharm 11:3-9. 104. Wagner, M. J., and J. R. Smiley. Herpes simplex virus requires VP11/12 to activate Src family kinase-phosphoinositide 3-kinase-Akt signaling. J Virol 85:2803-12. 105. Watson-Jones, D., H. A. Weiss, M. Rusizoka, J. Changalucha, K. Baisley, K. Mugeye, C. Tanton, D. Ross, D. Everett, T. Clayton, R. Balira, L. Knight, I. Hambleton, J. Le Goff, L. Belec, and R. Hayes. 2008. Effect of herpes simplex suppression on incidence of HIV among women in Tanzania. N Engl J Med 358:1560-71. 106. Xie, Z., P. Kometiani, J. Liu, J. Li, J. I. Shapiro, and A. Askari. 1999. Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J Biol Chem 274:19323-8. 107. Zhang, C. X., H. Ofiyai, M. He, X. Bu, Y. Wen, and W. Jia. 2005. Neuronal activity regulates viral replication of herpes simplex virus type 1 in the nervous system. J Neurovirol 11:256-64. 108. Zhen, H., F. Fang, D. Y. Ye, S. N. Shu, Y. F. Zhou, Y. S. Dong, X. C. Nie, and G. Li. 2006. Experimental study on the action of allitridin against human cytomegalovirus in vitro: Inhibitory effects on immediate-early genes. Antiviral Res 72:68-74. 109. Zhu, J., F. Hladik, A. Woodward, A. Klock, T. Peng, C. Johnston, M. Remington, A. Magaret, D. M. Koelle, A. Wald, and L. Corey. 2009. Persistence of HIV-1 receptor-positive cells after HSV-2 reactivation is a potential mechanism for increased HIV-1 acquisition. Nat Med 15:886-92. 110. Zhu, L. A., and S. K. Weller. 1992. The UL5 gene of herpes simplex virus type 1: isolation of a lacZ insertion mutant and association of the UL5 gene product with other members of the helicase-primase complex. J Virol 66:458-68. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37262 | - |
| dc.description.abstract | 第一型單純皰疹病毒(herpes simplex virus type 1;HSV-1)的基因,依據其調控順序及出現的時期,可分為立即早期基因(Immediate early gene;IE gene)、早期基因(Early gene;E gene)及晚期基因(Late gene;L gene)。在之前的研究中,我們發現原本用於治療心臟疾病的洋地黃毒苷(digitoxin)可抑制HSV-1在細胞中的複製。在本研究中,我們發現digitoxin亦可抑制第二型HSV(HSV-2)及對傳統藥物-無環鳥苷(acyclovir)具抗藥性的HSV-1病毒株;而digoxin、ouabain octahydrate 及 G-strophanthin等與digitoxin結構相似之化合物亦具有抑制HSV的活性。從作用時間點及抑制病毒基因的情形推斷,digitoxin應該是作用在HSV-1的早期基因表現之前。以digitoxin處理後,受HSV-1感染的Vero細胞內立即早期基因ICP4及ICP27蛋白質的表現量及表現ICP4的細胞比例皆明顯下降。由於digitoxin在病毒感染後3-4小時加入時對ICP4的抑制情形最為顯著,顯示digitoxin應該不是作用在病毒複製最早的階段,如病毒進入、脫殼(uncoating)或入核。此外,digitoxin並未改變ICP4及ICP27蛋白質的穩定性,且其mRNA表現量亦不受影響,暗示其可能藉由抑制基因轉譯來減少蛋白質表現量。目前我們已確定digitoxin並非藉由調控HSV-1小片段RNA-miR-H6或細胞的轉譯因子eIF3m、eIF4G及eIF4E的表現量來抑制HSV-1基因轉譯;但是此特異性的抑制作用需要細胞的Na+/K+-ATPase (NKA)受器的存在。藉由特異性地抑制HSV-1立即早期基因的蛋白質轉譯,digitoxin有機會成為抗病毒候選化合物。 | zh_TW |
| dc.description.abstract | Human herpes virus type 1 (HSV-1) is known to have a tightly-regulated cascade expression of its immediate early (IE), early (E), and late (L) genes. Previously, digitoxin, which was widely-used as cardiac drug, was shown to inhibit in vitro replication of HSV-1. In this study, we found that digitoxin can repress HSV-2 and acyclovir-resistant HSV-1, and several structural analogues of digitoxin such as digoxin, ouabain octahydrate and G-strophanthin also exhibited anti-HSV activity. The inhibitory effects of digitoxin are likely to be introduced at the early stage of HSV-1 replication. In HSV-infected Vero cells, the protein levels of IE gene ICP4 and ICP27 as well as the ratio of ICP4-positive cells decreased in the presence of digitoxin. The decrease of ICP4 protein level by digitoxin was most effective when digitoxin was added at 3-4 h post-infection, indicating that the inhibitory effect was less likely attributed to blocking of virus entry or post-entry events, such as uncoating and nuclear localization. Moreover, this reduction was not due to degradation of ICP4 and ICP27 protein, and the steady mRNA level suggests that the ICP4 and ICP27 protein translation was interrupted by digitoxin. At present, the involvement of HSV-encoded small RNA, miR-H6, and some eukaryotic translation initiation factors, including eIF3m, eIF4G and eIF4E in digitoxin-induced interruption of viral protein translation was excluded, and the specific interaction between digitoxin and Na+/K+-ATPase (NKA) pump was proved to be essential for such inhibition. Our results demonstrated that digitoxin is a specific inhibitor of HSV IE protein translation and could be a candidate of anti-HSV agents. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:22:48Z (GMT). No. of bitstreams: 1 ntu-100-D93424002-1.pdf: 6469942 bytes, checksum: 414a3511dff1823108bb68b814a1b94f (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 目錄 vi 圖表目錄 ix 1. Introduction 1 1.1. HSV Structure 1 1.2. HSV replication cycle 1 1.3. HSV gene expression 3 1.4. Anti-HSV chemotherapy 5 1.5. Cardiac digitalis and Na+/K+-ATPase (NKA) pump 7 1.6. Eukaryotic translation initiation machinery 8 2. Materials and Methods 12 2.1. Compounds, cells and viruses 12 2.2. Cell subculture 13 2.3. Virus infection 14 2.4. Plaque assay 14 2.5. Cytotoxicity assay 15 2.6. Immunofluorescence Assay 16 2.7. Western blot analysis 17 2.8. Northern blot analysis 19 2.9. Degradation assay 20 2.10. Reverse transcription (RT) and Polymerase chain reaction (PCR) 20 2.11. Real-time PCR 22 2.12. Statistical analysis 22 3. Results 23 3.1. Assessment of anti-HSV activity and cytotoxicity of digitoxin 23 and its analogues 3.2. Effective time point of digitoxin on HSV replication digitoxin 24 and its analogues 3.3. Effect of digitoxin on HSV-1 gene expression 24 3.4. Assessment of IE protein expression upon HSV-1 infection in 26 the presence of digitoxin 3.5. Assessment of IE protein expression in HSV-infected cells in 26 the presence of digitoxin 3.6. Determination of the post-infection time point where digitoxin 27 exerts its activity to reduce IE protein level 3.7. Assessment of IE protein stability in the presence of digitoxin 28 3.8. The role of HSV-1 miR-H6, eIF4E, eIF4G and eIF3m in 29 the inhibitory effects of digitoxin 3.9. Evaluation of anti-HSV activity of digitoxin in ouabain- 30 resistant mouse cells. 4. Discussion 31 5. Figures and Tables 38 6. References 56 7.Appendix 75 | |
| dc.language.iso | en | |
| dc.subject | 洋地黃毒苷 | zh_TW |
| dc.subject | 強心配醣體 | zh_TW |
| dc.subject | 單純皰疹病毒 | zh_TW |
| dc.subject | Digitoxin | en |
| dc.subject | HSV | en |
| dc.subject | Cardiac glycoside | en |
| dc.title | 洋地黃毒苷抑制第一型單純皰疹病毒立即早期基因之蛋白質表現 | zh_TW |
| dc.title | Inhibition of Herpes Simplex Virus Type 1Immediate-Early Protein Expression By Digitoxin | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 高全良(Chuan-Liang Kao),李君男(Chun-Nan Lee),蔡錦華(Ching-Hua Tsai),施信如(Ching-Hua Tsai) | |
| dc.subject.keyword | 洋地黃毒苷,單純皰疹病毒,強心配醣體, | zh_TW |
| dc.subject.keyword | Digitoxin,HSV,Cardiac glycoside, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 6.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
