Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37227
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor貝蘇章
dc.contributor.authorLong-Wei Liangen
dc.contributor.author梁隆威zh_TW
dc.date.accessioned2021-06-13T15:21:54Z-
dc.date.available2011-07-23
dc.date.copyright2008-07-23
dc.date.issued2008
dc.date.submitted2008-07-23
dc.identifier.citation[1] Patrick S. Huggins, and Steven W. Zucker, “Greedy Basis Pursuit,” IEEE Transactions on Signal Processing., vol. 55, no. 7, pp. 3760-3772, July 2007.
[2] S. G. Mallat, and Z. Zhang, “Matching pursuits with time-frequency dictionaries”, IEEE Tran. Signal Process., vol. 41, no. 12, pp. 3397-3415, Dec. 1993.
[3] S. Chen and D. Donoho. “Basis Pursuit,” in Proc. 28th Asilomar Conf. Signals, Syst. Comput., 1994, pp 41-44.
[4] S. S. Chen, “Basis Pursuit,” Ph.d. dissertation, Dept. Statistics, Stanford Univ, Stanford, CA, 1995.
[5] S. S. Chen, D.L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev., vol. 43, no. 1, pp. 129-159, 2001.
[6] G. B. Dantzig and W. Orchard-Hays, “The product form for the inverse in the simplex method,” Math. Tables Other Aids Comput., vol. 8, pp. 64-67, 1954.
[7] Y. Zhang, “User’s guide to LIPSOL Linear-programming Interior Point SOLvers v4.0,” Opt. Methods Softw., pp. 11-12, 1999.
[8] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image Compression Fundamentals , Standards and Practice. Norwell, MA: Kluwer, 2001.
[9] E. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Prob., vol. 23, no. 3, pp. 969-985, 2007.
[10] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006.
[11] William. K. Pratt, Digital Image Processing, third edition, John Wiley & Sons, 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37227-
dc.description.abstract近年來,人們為了節省儲存空間或方便傳輸而發展出許多壓縮信號的方法,而這些方法通常都是先將信號完整取得,然後以不嚴重失真為原則將其中不必要的部分刪除。對於感測儀器來說(例如:照相機、收音機等),將所有信號完整接收之後又將其中大部分的資料刪除是ㄧ種浪費的行為,尤其是壓縮率大為提高的今天,ㄧ個信號的主要資訊只集中在一小部份而其他絕大多數部分將被捨棄。
如今我們將介紹一種新的方法,將信號的壓縮與感測在同一時間完成,稱之為『壓縮感測』(Compressive Sensing)。而經過壓縮的感測值可以經由『疊代式基底搜尋演算法』(Greedy Basis Pursuit)將原本的信號重建回來。
當我們擷取ㄧ段信號時,取樣定理指出若要避免混疊效應(aliasing effect)而重建此信號,則取樣頻率必須大於信號最高頻率的兩倍,也就是我們熟知的奈奎斯速率(Nyquist rate)。由於壓縮感測將壓縮及感測結合在一起,所以其取樣頻率將會大幅減小而低於奈奎斯速率,也因此顛覆了取樣定理。
zh_TW
dc.description.abstractIn the last few years, people compress signals after acquiring them. In the process of compression, there would be some information discarded from the signal by the compression algorithm. It is a waste that one obtains a signal and then throws parts of them away. If the compression ratio is large, it means one spend unnecessary time on acquiring this signal.
Now we introduce a novel method that acquires and compresses a signal simultaneously, called Compressive Sensing. After compressive sensing a signal, one can get a condensed measurement. The minimization of l 1-norm is used to recover the signal from the measurement. Many algorithms can handle this problem, such as Matching Pursuit, Basis Pursuit and so on. Now we apply a faster algorithm to the problem, that is, Greedy Basis Pursuit.
By the CS theory, one acquires a signal in a condensed form. Hence this theory beats the Shannon sampling theorem because it samples signals at a rate significantly below the Nyquist rate.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:21:54Z (GMT). No. of bitstreams: 1
ntu-97-R95942116-1.pdf: 2897236 bytes, checksum: 6641bf5d32c72b127136a682a051464d (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsChapter 1 Introduction 1
Chapter 2 Greedy Basis Pursuit 3
2.1 Problem statement 3
2.2 Related work 4
2.2.1 Matching Pursuit 5
2.2.2 Basis Pursuit 6
2.3 Geometry of Basis Pursuit 7
2.4 Greedy Basis Pursuit Algorithm 8
2.4.1 Variables Statement 8
2.4.2 Initialization 9
2.4.3 Iteration 10
2.4.4 Computational Details 13
2.5 Analysis 18
2.6 Results 20
Experiment 1 20
Experiment 2 22
Experiment 3 23
2.7 Conclusion 24
Chapter 3 Compressive Sensing 27
3.1 Problem statement 28
3.2 Sparsity and Incoference 31
3.2.1 Sparsity 31
3.2.2 Incoherence 34
3.3 Undersampling and Sparse Signal Recovery 35
3.3.1 Undersampling 35
3.3.2 Sparse Signal Recovery 35
3.4 Restriction on the Measurement Size 38
3.5 Discussion 40
3.6 Conclusion 41
Chapter 4 Experimental Results of Compressive Sensing 43
4.1 Audio 44
4.1.1 Space domain 46
4.1.2 DCT domain 48
4.2 Image 50
4.2.1 Binary image 50
4.2.2 Gray level image 52
4.3 Conclusion 58
Chapter 5 Conclusion and Future Work 61
5.1 Conclusion 61
5.2 Future Work 63
REFERENCE 65
dc.language.isoen
dc.subject感測zh_TW
dc.subject壓縮zh_TW
dc.subjectGreedy Basis Pursuiten
dc.subjectCompressive Sensingen
dc.title使用疊代式基底搜尋演算法之壓縮感測zh_TW
dc.titleCompressive Sensing Using Greedy Basis Pursuiten
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張豫虎,林康平,徐忠枝
dc.subject.keyword壓縮,感測,zh_TW
dc.subject.keywordCompressive Sensing,Greedy Basis Pursuit,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2008-07-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved