Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37198
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡丁貴
dc.contributor.authorNan-Jing Wuen
dc.contributor.author吳南靖zh_TW
dc.date.accessioned2021-06-13T15:21:10Z-
dc.date.available2009-07-30
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-22
dc.identifier.citationAlves C.J.S., Antunes P.R.S., The method of fundamental solutions applied to the calculation of eigenfrequencies and eigenmodes of 2D simply connected shapes, Computers, Materials and Continua, 2005; 2: 251-266.
Ambrosi D., Quartapelle L., A Taylor-Galerkin Method for Simulation Nonlinear Dispersive Waves, Journal of Computational Physics, 1998; 146: 546-569.
Ata R., Soulaimani A., A stabilized SPH method for inviscid shallow water flows, International Journal for Numerical Methods in Fluids, 2005; 47: 139-159.
Berkhoff J.C.W., Computation of combined refraction-diffraction, Proceedings of 13th Conference in Engineering, ASCE, 1972: 471-490.
Bertram V., Schultz W.W., Cao Y., Beck R.F., Nonlinear computations for wave drag, lift and moment of a submerged spheroid, Ship Technology Research, 1991; 38: 3-5.
Beylkin G., Coifman R., Rokhlin V., Fast wavelet transforms and numerical algorithms I, Communications on Pure and Applied Mathematics, 1991; 44: 141-183.
Boussinesq J., Theorie des ondes et ramous qui se propagent le long dun canal rectangularire horizontal, en communiquant au liquide contenu dansce cnal des vetesses sensiblement pareilles de la surface au, Journal Mathematiques Pures et Appliquees, 2nd Series, 1872; 17: 55-108.
Cao Y., Computations of nonlinear gravity waves by a desingularised boundary integral method, Ph.D. Dissertation 1991, Department of Naval Architecture and Marine Engineering, The University of Michigan.
Cao Y.S., Schultz W.W., Beck R.F., 3-dimensional desingularized boundary integral methods for potential problems, International Journal for Numerical Methods in Fluids, 1991; 12: 785-803.
Chen K.H., Kao J.H., Chen J.T., Young D.L., Lu M.C., Regularized meshless method for multiply-connected-domain Laplace problems, Engineering Analysis with Boundary Elements, 2006; 30: 882-896.
Chen K.H., Chen J.T., Kao J.H., Regularized meshless method for antiplane shear problems with multiple inclusions, International Journal for Numerical Methods in Engineering, 2008; 73: 1251-1273.
Chen M.Y., Mei C.C., Second-order refraction and diffraction of surface water waves, Journal of Fluid Mechanics, 2006; 552: 137-166.
Cooker M.J., Peregrine D.H., Skovggard O., The interaction between a solitary wave and a submerged semicircular cylinder, Journal of Fluid Mechanics, 1990; 215: 1-22.
Doctors L.J., Beck R.F., Convergence properties of the Neumann-Kelvin problem for a submerged body, Journal of Ship Research, 1987; 31: 227-234.
Dommermuth D.G., Yue D.K.P., A high-order spectral method for the study of nonlinear gravity waves, Journal of Fluid Mechanics, 1987a; 184: 267-288.
Dommermuth D.G., Yue D.K.P., Numerical simulations of nonlinear axisymmetric flows with a free surface, Journal of Fluid Mechanics, 1987b; 178: 195-219.
Dong C.M., Huang C.J., Generation and propagation of water waves in a two-dimensional numerical viscous wave flume, Journal of waterway, Port, Coastal, and Ocean Engineering, ASCE, 2004; 130: 143-153.
Du C.J., Finite-point simulation of steady shollow water flows, Journal of Hydraulic Engineering, ASCE, 1999; 125: 621-630.
Du C.J., An element-free Galerkin method for simulation of stationary two-dimensional shallow water flows in rivers, Computer Methods in Appiled Mechanics and Engineering, 2000; 182: 89-107.
Farell C., On the wave resistance of a submerged spheroid, Journal of Ship Research, 1973; 17: 1-11.
Fenton J.D., A ninth-order solution for the solitary wave, Journal of Fluid Mechanics, 1972; 53: 257-271.
Fenton J.D., Rienecker M.M., A Fourier method for solving non-linear water-wave problems – application to solitary-wave interactions, Journal of Fluid Mechanics, 1982; 120: 267-281.
Franke C., Scattered data interpolation: test of some methods, Mathematics of Computation, 1982; 38: 181-200.
Glauss G., Dramas of the sea: episodic waves and their impact on offshore structures, Applied Ocean Research, 2002; 24: 147-161.
Gobbi M.F., Kirby J.T., Wave evolution over submerged sills: tests of a high order Boussinesq model, Coastal Engineering, 1999; 37: 57-96.
Golberg M.A., Chen C.S., The method of fundamental solutions for potential, Helmholtz and diffusion problems, in boundary integral methods-numerical and mathematical aspects, Computational Mechanics Publications, 1998; 103-176.
Grilli S.T., Skourup J., Svendsen I.A., An efficient boundary element method for nonlinear water waves, Engineering Analysis with Boundary Elements, 1989; 6: 97-107.
Grilli S.T., Guyenne P., Dias F., A fully nonlinear model for three-dimensional overturning waves over an arbitrary bottom, International Journal for Numerical Methods in Fluids, 2001; 35: 829-867.
Grimshaw R., The Solitary Wave in water of variable depth, Part 2, Journal of Fluid Mechanics, 1971; 9: 611-622.
Hackbusch W., Nowak Z.P., On the fast matrix multiplication in the boundary element method by panel clustering, Numerische Mathematik, 1989; 54: 463-491.
Havelock T.H., The wave resistance of a spheroid, Proceedings of the Royal Society of London, 1931; A131: 275-285.
Hardy R.L., Multiquadric equations of topography and other irregular surfaces, Journal of geophysical research, 1971; 76: 1905-1915.
Issacson M., Nonlinear wave effects on fixed and floating bodies, Journal of Fluid Mechanics, 1982; 120; 267-281.
Issacson M., Cheung K.F., Second order wave diffraction around two-dimensional bodies by time domain method, Applied Ocean Research, 1991; 13: 175-186.
Kansa J.E., Multiquadrics-A scattered data approximation scheme with applications to computational fluid dynamics-II, Solutions to parabolic, hyperbolic and elliptic partial differential equations, Computers & mathematics with applications, 1990; 19: 127-145.
Kent C.P., Choi W., An explicit formulation for the evolution of nonlinear surface waves interacting with a submerged body, International Journal for Numerical Methods in Fluids, 2007; 55: 1019-1038.
Korteweg D.J., de Vries G., On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philosophical Magazine, Series 5, 1895; 39: 422-443.
Laitone E.V., The second approximation to cnoidal and solitary waves, Journal of Fluid Mechanics, 1960; 9: 430-444.
Lalli F., On the accuracy of the desingularized boundary integral method in free surface flow problems, International Journal for Numerical Methods in Fluids, 1997; 25: 1163-1184.
Liu P.L.F., Tasy T.K., Refraction-diffraction model for weakly nonlinear water waves, Journal of Fluid Mechanics, 1984; 136: 453-466.
Lo D.C., Young D.L., Arbitrary Lagrangian-Eulerian finite element analysis of free surface flow using a velocity-vorticity formulation, Journal of Computational Physics, 2004; 195: 175-201.
Longuet-Higgins H.S., Cokelet E.D., The deformation of steep waves on water, I. a numerical method of computation, Proceedings of the Royal Society of London, 1976; A350:1-26.
Ma Q., Meshless local Petrov-Galerkin method for two-dimensional nonlinear water wave problems, Journal of Computational Physics, 2005; 205, 611-625.
Madsen O.S., On the generation of long waves, Journal of Geophysical Research, 1971; 76, 8672-8683.
Massel S.R., Harmonic generation by waves propagating over a submerged step, Coastal Engineering, 1983; 7: 357-380.
Moody J., Darken C., Fast-learning in networks of local tuned processing units, Neural computation, 1989; 1: 281-294.
Nwogu O., An alternative form of Boussinesq equations for near shore wave propagation, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 1993; 119: 618-638.
Ohyama T., Nadaoka K., Development of a numerical wave tank for analysis of nonlinear and irregular wave field, Fluid Dynamics Research, 1991; 8: 231-251.
Ohyama T., Beji S., Nadaoka K., Battjes J.A., Experimental verification of numerical model for nonlinear wave evolutions, Journal of Waterway Port Coastal and Ocean Engineering, ASCE, 1994; 120: 637-644.
Palm E., Nonlinear wave reflection from a submerged circular cylinder, Journal of Fluid Mechanics, 1991; 233: 49-63.
Pennell S.Q., Su C.H., A seventeenth-order series expansion for a solitary wave, Journal of Fluid Mechanics, 1984; 149: 431-443.
Peregrine D.H., Long waves on beach, Journal of Fluid Mechanics, 1967; 27: 815-827.
Rokhlin V., Rapid solution of integral equations of classical potential theory, Journal of Computational Physics, 1985; 60: 187-207.
Saavedra I., Power H., Multipole fast algorithm for the least-squares approach of the method of fundamental solutions for three-dimensional harmonic problems, Numerical Methods for Partial Differential Equations, 2003; 19: 828-845.
Scullen D.C., Accurate computation of steady nonlinear free-surface flows, Ph.D. Dissertation 1998, Department of Applied Mathematics, The University of Adelaide. (downloadable from http://internal.maths.adelaide.edu.au/people/scullen/Web_pages
/publications.html)
Sulisz W., Diffraction of second-order surface waves by semisubmerged horizontal rectangular cylinder, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 1993; 119: 160-171.
Tang Y., Ouellet Y., A New Kind of Nonlinear Mild-Slope Equation for Combined Refraction-Diffraction of Multi-frequency Waves, Coastal Engineering, 1996; 31: 3-36.
Tsai W.T., Yue D.K.P., Computation of nonlinear free-surface flows, Annual Review of Fluid Mechanics, 1996; 28: 249-278.
Tuck E.O., Scullen D.C., A comparison of linear and nonlinear computations of waves made by slender submerged bodies, Journal of Engineering Mathematics, 2002; 42: 255-264.
Ursell F., Dean R.G., Yu Y.S., Forced small amplitude water waves: a comparison of theory and experiment, Journal of Fluid Mechanics, 1960; 7: 32-53.
Vada T., A numerical solution of the second-order wave-diffraction problem for a submerged cylinder of arbitrary shape, Journal of Fluid Mechanics, 1987; 174: 23-37.
Wang K.H., Wu T.Y., Yates G.T., Three-dimensional scattering of solitary waves by vertical cylinder, Journal of Waterway Port Coastal and Ocean Engineering, ASCE, 1992; 118: 551-566.
Wang Q.X., Unstructured MEL modeling of nonlinear unsteady ship waves, Journal of Computational Physics, 2005; 210: 368-385.
Wei G., Kirby J.T., Grilli S.T., Subramanya R., Time-dependent numerical code for extended Boussinesq equations, Journal of Fluid Mechanics, 1995; 294: 71-92.
West B.J., Brueckner K., Janda R.S., Milder D., Milton R., A new numrrical-method for surface hydrodynamics, Journal of Geophysical Research-Oceans, 1987; 92: 11803-11824
Wu N.J., Tsay T.K., Young D.L., Meshless simulation for fully nonlinear water waves, International Journal for Numerical Methods in Fluids, 2006; 50: 219-234.
Wu N.J., Tsay T.K., Young D.L., Computation of Nonlinear Free-Surface Flows by a Meshless Numerical Method, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 2008; 134: 97-103.
Young D.L., Jane S.J., Lin C.Y., Chiu C.L., Chen K.C., Solution of 2D and 3D Stokes law using multiquadratics method, Engineering Analysis with Boundary Elements, 2004; 28: 1233-1243.
Young D.L., Chen K.H., Lee C.W., Novel meshless method for solving the potential problems with arbitrary domain, Journal of Computational Physics, 2005; 209: 290-321.
Young D.L., Chen K.H., Chen J.T., Kao J.H., A modified method of fundamental solutions with source on the boundary for solving Laplace equations with circular and arbitrary domain, Computer Modeling in Engineering and Science, 2007; 19: 197-221.
Zhou X., Hon Y.C., Cheung K.F., A grid-free, nonlinear shallow-water model with moving boundary, Engineering Analysis with Boundary Elements, 2004; 28: 967-973.
Zhu Q., Liu Y.M., Yue D.K.P., Three-dimensional instability of standing waves, Journal of Fluid Mechanics, 2003; 496: 213-242.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37198-
dc.description.abstract本論文利用無網格數值方法,建立一個能模擬完全非線性水面波的數值模式。在空間方面,以拉普拉斯方程式(Laplace Equation)基本解(Fundamental Solution) 之線性組合擬合流體速度勢(Velocity Potential),將前述基本解之中心(Source Point)置於計算邊界以外的位置,僅需由適當少數邊界點上的邊界條件即可進行求解,不需要積分,也不需要處理任何奇異點(Singularity)。在時間方面,利用二階中央差分,將自由液面邊界條件離散成為顯式的差分式,不需要迭代,也不需在時間上做積分,即可推測下個時間步(Time Step)求解所需之自由液面邊界條件。此種離散方式亦稱為跳蛙法(Leap Frog Scheme)。而推算下個時間步自由液面邊界條件需要自由液面梯度,則透過高斯幅狀基底函數(Gaussian Radial Basis Function)來擬合自由液面的水位高程,進而得到求解所需之條件。
本論文先模擬孤立波在三維渠道內之傳遞,並檢查質量與能量之守恒,來證明本數值方法之正確性。然後,再分別模擬二維及三維的問題,來說明本數值方法之適用性。各項數值模擬,均與前人研究之解析解、數值解或實驗結果比較,以說明模擬結果之準確可靠。
zh_TW
dc.description.abstractA numerical model for fully nonlinear free surface waves is developed in present study, by applying a boundary-type meshless approach with leap frog time marching scheme. Adopting Gaussian Radial Basis Functions to fit the free surface, a non-iterative approach to discretize the nonlinear free surface boundary conditions is formulated. Using the fundamental solutions of the Laplace equation as the solution form of the velocity potential, free-surface wave problems can be solved by collocations at only a few boundary points since the governing equation is automatically satisfied.
The accuracy of present method is verified by comparing the simulated propagation of a solitary wave in a three dimensional flume with an exact solution. The applicability of present model is illustrated by employing it to simulate both two dimensional and three dimensional problems. Good agreement can be found in comparing the results of present numerical model with other schemes, as well as with analytic solutions and available experimental data.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:21:10Z (GMT). No. of bitstreams: 1
ntu-97-D90521005-1.pdf: 3045743 bytes, checksum: 24cc1c88631967be68ebef52def95430 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsContents
Acknowledgement..........................................Ⅰ
Abstract.................................................Ⅱ
Abstract (in Hanji) .....................................Ⅲ
Contents.................................................Ⅳ
Figure Captions..........................................Ⅵ
Table List...............................................Ⅹ
Ⅰ. Introduction..........................................1
Ⅱ. Mathematical Description..............................7
2.1 Governing Equations...................................7
2.2 Initial Condition and Boundary Conditions.............9
2.2.1 Initial condition...................................9
2.2.2 Boundary conditions at the free surface.............9
2.2.3 Boundary condition on a solid boundary.............10
Ⅲ. Numerical Implementation.............................11
3.1 Radial Basis Functions...............................11
3.2 Time Marching Scheme.................................12
3.3 Collocation for solving the Velocity Potential.......13
3.4 Calculation of the Free Surface Gradient.............14
3.5 Procedures of Numerical Implementation...............16
Ⅳ. Model Verification...................................18
Ⅴ. Applications to 2-D Problems - Wave Propagation in a Wave Flume...............................................22
5.1 Description of the Problem...........................22
5.2 Model Setting........................................24
5.2.1 Arrangement of boundary and source points..........24
5.2.2 Offset distances of source points from the boundary.................................................26
5.2.3 Shape parameters of Gaussian radial basis functions................................................28
5.2.4 Convergence of free surface nodal resolution.......32
5.2.5 Elimination of wave reflection using radiation boundary condition on a gentle slope.....................35
5.3 Numerical Results....................................36
5.3.1 Wave height distributions nearby a piston-type wavemaker................................................36
5.3.2 Second harmonic wave components generated by a high-stroke wavemaker.........................................41
5.3.3 Evolution of monochromatic waves passing over a submerged obstacle.......................................46
Ⅵ. Application to 3-D Problems (Ⅰ) – Run up of a Solitary Wave on a Surface Piercing Vertical Cylinder....55
6.1 Description of the Problem...........................55
6.2 Model setting........................................55
6.3 Numerical Results....................................57
Ⅶ. Application to 3-D Problems (Ⅱ) – Wave Generation by a Submerged Moving Object................................62
7.1 Description of the Problem...........................62
7.2 Model Setting........................................64
7.2.1 Arrangement of boundary and source points..........64
7.2.2 Spacing for free surface nodes.....................67
7.3 Numerical results....................................70
7.3.1 Wave pattern generated by a submerged moving spheroid.................................................70
7.3.2 Drag force exerted on the spheroid.................78
7.3.3 Wave pattern generated by other shaped objects.....83
Ⅷ. Conclusions and Suggestions..........................89
8.1 Conclusions..........................................89
8.2 Suggestions..........................................91
References...............................................93
Figure Captions
Fig. 1 The propagation of the solitary wave, for the case of H/h0=0.3..............................................21
Fig. 2 The evolution of the relative mass error, for the propagation of a solitary wave of the case H/h0=0.3......21
Fig. 3 Schematic diagram of boundary and source points arrangement for 2–D problems of wave propagation in a flume....................................................26
Fig. 4 Computed free surface profiles at instant of t=4T for testing the influence of offset distance ratio r_d (in a flume of h=38cm with period and amplitude of wave paddle oscillation 2.75sec and 6.1cm, respectively).............27
Fig. 5 Demonstration of the singularity in case of mal-choosing the shape parameter when fitting the free surface with Gaussian radial basis functions.....................29
Fig. 6 Free surface profiles calculated using present method with various shape parameter ratio, r_d, at the instant of t=T (in the flume of h=38cm with period and amplitude of wave paddle oscillation 2.75sec and 6.1cm, respectively.............................................31
Fig. 7 Free surface gradients generated from the output free surface elevations by using finite difference method, compared with the output results with shape parameter ratio, r_sigma=0.8 and r_sigma=1.0, at the instant of t=T (in a flume of h=38cm with period and amplitude of wave paddle oscillation 2.75sec and 6.1cm, respectively)......32
Fig. 8 Computed free surface profiles at the very moment of t=4T for testing convergence of nodal density (in a flume of h=38cm with period and amplitude of wave paddle oscillation 2.75sec and 6.1cm, respectively).............34
Fig. 9 Free surface profiles at the instant of t=7T in the flume with different flume length (in a flume of h=38cm with period and amplitude of wave paddle oscillation 2.75sec and 6.1cm, respectively).........................36
Fig. 10 Wave evolution nearby the wave paddle for the case of T=0.79sec, S=2.54cm, h=2.00ft.................................................38
Fig. 11 Envelopes of the wave crest and the wave trough nearby the wave paddle for the case of T=0.79sec, S=2.54cm, h=2.00ft.......................................39
Fig. 12 Wave height distributions near the wave paddle of a piston type wavemaker..................................40
Fig. 13 Comparison of predicted deviation from wave maker theory due to finite wave steepness with the experimental data.....................................................40
Fig. 14 Wave evolution nearby the wave paddle for the case of T=2.75sec, S=12.2cm, h=38cm...................................................44
Fig. 15 Time history of free surface elevation at two stations, x = 4.9 m and 8.7 m, for the case of T=2.75sec, S=12.2cm, h=38cm.........................................44
Fig. 16 Comparison between observed, predicted, and numerical surface displacements generated by a sinusoidally-moving wavemaker, for the case of T=2.75sec, S=12.2cm, h=38cm.........................................45
Fig. 17 Numerical results of free surface profile at t=21.8sec along the wave flume, for the case of T=2.75sec, S=12.2cm, h=38cm...................................................46
Fig. 18 Wave flume and locations of wave gages (Ohyama et al., 1994)...............................................48
Fig. 19 Free surface displacements for long monochromatic waves at stations........................................49
Fig. 20 Free surface displacements for short monochromatic waves at stations........................................53
Fig. 21 Arrangement of the collocation points and source points in the vicinity of the cylinder for simulation of the run up of a solitary wave on a surface piercing cylinder.................................................57
Fig. 22 Sequences of a solitary wave running up on a vertical cylinder in a three-dimensional view, for the case of H/h0=0.3.........................................58
Fig. 23 Sketch of a spheroid and variables associated with its motion...............................................65
Fig. 24 Schematic diagram of the arrangement of boundary and source points for the problem of wave generation by a submerged moving object..................................66
Fig. 25 Computed free surface profiles of y=0 at stage of xc=2L for testing convergence of free surface nodal density (the spheroid in diameter-to-length ratio 0.1 with the diameter-to-submergence ratio 1.0 and Froude number 0.5).....................................................68
Fig. 26 Comparison of free surface contours calculated in constant nodal spacing with those contours calculated in variant nodal spacing at stage of xc=4L (the spheroid in diameter-to-length ratio 0.1 with the diameter-to-submergence ratio 1.0 and Froude number 0.5).............70
Fig. 27 Evolution of free surface elevation contours for the case of a spheroid in diameter-to-length ratio 0.1 with the diameter-to-submergence ratio 1.0 and Froude number 0.5...............................................72
Fig. 28 Evolution of the central free surface profile for the case of a spheroid in diameter-to-length ratio 0.1 with the diameter-to-submergence ratio 1.0 and Froude number 0.5...............................................76
Fig. 29 Wave pattern in a three-dimensional view at stage of xc=8L for the case of a spheroid in diameter-to-length ratio 0.1 with the diameter-to-submergence ratio 1.0 and Froude number 0.5........................................76
Fig. 30 Computed central free surface profile at steady state compared with other numerical results, for the case of a spheroid in diameter-to-length ratio 0.1 with the diameter-to-submergence ratio 1.0 and Froude number 0.5......................................................78
Fig. 31 Wave patterns in a three-dimensional view at stage of xc=8L for the case of a spheroid in diameter-to-length ratio 0.245 with diameter-to-submergence ratio 0.816.....79
Fig. 32 Comparison of resistance coefficient computed by present model with other numerical results, for the case of a spheroid in diameter-to-length ratio 0.245 with diameter-to-submergence ratio 0.816......................83
Fig. 33 Bodies considered in wave resistance problem in the work of Lalli (1997).................................84
Fig. 34 Wave patterns in a three-dimensional view at stage of xc=8L for both bodies for cases of diameter-to-length ratio 0.2, diameter-to-submergence ratio 1.0 and Froude number 0.447 and 0.448, respectively.....................86
Fig. 35 Comparison of present results with experimental data and the numerical results of Lalli (1997) for the case of the spheroid in diameter-to-length 0.2, diameter to submergence ratio 1.0, and Froude number 0.447........87
Fig. 36 Comparison of present results with experimental data and the numerical results of Lalli (1997) for the case of streamlined cylinder in diameter-to-length 0.2, diameter-to-submergence ratio 1.0, and Froude number 0.448....................................................88
Table List
Table 1 List of Ursell et al.'s (1960) finite amplitude wave generation conditions...............................37
dc.language.isoen
dc.title以高斯幅狀基底函數之無網格方法數值模擬完全非線性水面波zh_TW
dc.titleNumerical simulation of fully nonlinear surface waves by meshless method with Gaussian radial basis functionsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee蘇青和,林銘崇,陳正宗,許榮中,楊德良,許泰文,蔡武廷
dc.subject.keyword無網格數值方法,非線性水波,基本解,高斯輻狀基底函數,zh_TW
dc.subject.keywordMeshless Numerical Method,Nonlinear Water Wave,Gaussian Radial Basis Function,Fundamental Solution,en
dc.relation.page103
dc.rights.note有償授權
dc.date.accepted2008-07-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved