請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3716完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳光禎(Kwang-Cheng Chen) | |
| dc.contributor.author | Hang Yang | en |
| dc.contributor.author | 楊行 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:36:10Z | - |
| dc.date.available | 2018-02-17 | |
| dc.date.available | 2021-05-13T08:36:10Z | - |
| dc.date.copyright | 2017-02-17 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2017-02-13 | |
| dc.identifier.citation | [1] “Draft 1.0, Part 11: Wireless LAN Medium Access Control (MAC) and Physi-cal Layer (PHY) Specifications, Amendment 6: Enhancements for High Efficiency WLAN,” IEEE Std. 802.11ax, pp. 1–376, Dec 2016.
[2] “wikipedia, Open Systems Interconnection model (OSI model),” https://en.wikipedia.org/wiki/OSI model, [Online; accessed on 10-Dec-2016]. [3] “IEEE 802.11-2012: Wireless LAN Medium Access Control MAC and Physical Layer PHY Specifications,” IEEE 802.11 LAN Standards, 2012. [4] “WiFi Alliance,” http://www.wi-fi.org/. [5] H. Lipfert, “MIMO OFDM Space Time Coding–Spatial Multiplexing, Increasing Performance and Spectral Efficiency in Wireless Systems, Part I Technical Basis (Technical report),” Institut f ̈ur Rundfunktechnik, 2007. [6] O. Bejarano, E. W. Knightly, and M. Park, “IEEE 802.11 ac: from channelization to multi-user MIMO.” IEEE Communications Magazine, vol. 51, no. 10, pp. 84–90, 2013. [7] “IEEE std 802.11ac:-2013 Wireless LAN Medium Access Control MAC and Physical Layer PHY Specifications,” IEEE 802.11 LAN Standards, 2013. [8] E. Perahia and R. Stacey, Next Generation Wireless LANS: 802.11 n and 802.11 ac. Cambridge university press, 2013. [9] Cisco, “Cisco Visual Networking Index:Forecast and Methodology, 2015-2020,” http://www.cisco.com/c/en/us/solutions/collateral/service-provider/39visual-networking-index-vni/complete-white-paper-c11-481360.pdf, [Online;accessed on 13-June-2016]. [10] H. S. Simone Merlin, Gwen Barriac, “TGax Simulation Scenarios,” http://www.ieee802.org/11/Reports/tgax update.htm, July 2015, [Online; accessed on 5-Dec-2016]. [11] S. Barakovi ́c and L. Skorin-Kapov, “Survey and challenges of QoE management issues in wireless networks,” Journal of Computer Networks and Communications, vol. 2013, 2013. [12] F. Tobagi and L. Kleinrock, “Packet switching in radio channels: Part ii–the hidden terminal problem in carrier sense multiple-access and the busy-tone solution,” IEEE Transactions on communications, vol. 23, no. 12, pp. 1417–1433, 1975. [13] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data networks. Prentice-Hall International New Jersey, 1992, vol. 2. [14] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE Journal on selected areas in communications, vol. 18, no. 3, pp. 535–547, 2000. [15] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing algorithm,” in ACM SIGCOMM Computer Communication Review, vol. 19, no. 4. ACM, 1989, pp. 1–12. [16] O. Aboul-Magd, “802.11 HEW SG Proposed PAR,” http://www.ieee802.org/11/Reports/tgax update.htm, March 2014, [Online; accessed 5-Dec-2016]. [17] M. Morelli, C.-C. J. Kuo, and M.-O. Pun, “Synchronization techniques for orthogonal frequency division multiple access (ofdma): A tutorial review,” Proceedings of the IEEE, vol. 95, no. 7, pp. 1394–1427, 2007. [18] N. Abramson, “THE ALOHA SYSTEM: another alternative for computer communications,” in Proceedings of the November 17-19, 1970, fall joint computer conference. ACM, 1970, pp. 281–285. [19] L. G. Roberts, “ALOHA packet system with and without slots and capture,” ACM SIGCOMM Computer Communication Review, vol. 5, no. 2, pp. 28–42, 1975. [20] L. Kleinrock and F. Tobagi, “Packet switching in radio channels: Part I-carrier sense multiple-access modes and their throughput-delay characteristics,” IEEE transactions on Communications, vol. 23, no. 12, pp. 1400–1416, 1975. [21] K.-C. Chen, “Medium access control of wireless LANs for mobile computing,” IEEE Network, vol. 8, no. 5, pp. 50–63, 1994. [22] T.-S. Ho and K.-C. Chen, “Performance analysis of IEEE 802.11 CSMA/CA medium access control protocol,” in proc. PIMRC, vol. 96, 1996, pp. 407–411. [23] F. Cali, M. Conti, and E. Gregori, “IEEE 802.11 protocol: design and performance evaluation of an adaptive backoff mechanism,” IEEE journal on selected areas in communications, vol. 18, no. 9, pp. 1774–1786, 2000. [24] F. Cal`ı, M. Conti, and E. Gregori, “Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit,” IEEE/ACM Transactions on Networking (ToN), vol. 8, no. 6, pp. 785–799, 2000. [25] Y. S. Liaw, A. Dadej, and A. Jayasuriya, “Performance analysis of IEEE 802.11 DCF under limited load,” pp. 759–763, 2005. [26] F. Daneshgaran, M. Laddomada, F. Mesiti, and M. Mondin, “Unsaturated throughput analysis of IEEE 802.11 in presence of non ideal transmission channel and capture effects,” IEEE Transactions on Wireless Communications, vol. 7, no. 4, pp.1276–1286, 2008. [27] D. Qiao, S. Choi, and K. G. Shin, “Goodput analysis and link adaptation for IEEE 802.11 a wireless LANs,” IEEE transactions on Mobile Computing, vol. 99, no. 4, pp. 278–292, 2002. [28] P. Chatzimisios, A. Boucouvalas, and V. Vitsas, “Influence of channel BER on IEEE 802.11 DCF,” Electronics letters, vol. 39, no. 23, p. 1687, 2003. [29] Q. Ni, T. Li, T. Turletti, and Y. Xiao, “Saturation throughput analysis of error-prone 802.11 wireless networks,” Wireless Communications and Mobile Computing, vol. 5, no. 8, pp. 945–956, 2005. [30] Z.-n. Kong, D. H. Tsang, B. Bensaou, and D. Gao, “Performance analysis of IEEE 802.11 e contention-based channel access,” IEEE Journal on selected areas in communications, vol. 22, no. 10, pp. 2095–2106, 2004. [31] I. Rubin, “Group random-access disciplines for multi-access broadcast channels,” IEEE Transactions on Information Theory, vol. 24, no. 5, pp. 578–592, 1978. [32] W. Szpankowski, “Packet switching in multiple radio channels: Analysis and stability of a random access system,” Computer Networks (1976), vol. 7, no. 1, pp. 17–26, 1983. [33] M. A. Marsan and M. Bruscagin, “Multichannel Aloha networks with reduced connections,” in IEEE INFOCOM, vol. 87, 1987, pp. 268–275. [34] H. Tan and H. Wang, “Performance of multiple parallel slotted Aloha channels,” in Proc. INFOCOM, vol. 87, 1987, pp. 931–940. [35] Z. Zhang and Y.-J. Liu, “Multichannel Aloha data networks for personal communications services (PCS),” in Global Telecommunications Conference, 1992. Conference Record., GLOBECOM’92. Communication for Global Users., IEEE. 1992, pp. 21–25. [36] F. Tobagi and L. Kleinrock, “Packet switching in radio channels: Part iii–polling and (dynamic) split-channel reservation multiple access,” IEEE Transactions on Communications, vol. 24, no. 8, pp. 832–845, 1976. [37] J. Deng, Y. S. Han, and Z. J. Haas, “Analyzing split channel medium access control schemes,” IEEE Transactions on Wireless Communications, vol. 5, no. 5, pp. 967–971, 2006. [38] Y. S. Han, J. Deng, and Z. J. Haas, “Analyzing multi-channel medium access control schemes with aloha reservation,” IEEE Transactions on Wireless Communications, vol. 5, no. 8, pp. 2143–2152, 2006. [39] H. Kwon, H. Seo, S. Kim, and B. G. Lee, “Generalized CSMA/CA for OFDMA systems: protocol design, throughput analysis, and implementation issues,” IEEE Transactions on Wireless Communications, vol. 8, no. 8, pp. 4176–4187, August 2009. [40] D. Shen and V. O. Li, “Performance analysis for a stabilized multi-channel slotted ALOHA algorithm,” in Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. 14th IEEE Proceedings on, vol. 1. IEEE, 2003, pp. 249–253. [41] P. Zhou, H. Hu, H. Wang, and H.-h. Chen, “An efficient random access scheme for OFDMA systems with implicit message transmission,” IEEE transactions on wireless communications, vol. 7, no. 7, pp. 2790–2797, 2008. [42] Y.-J. Choi, S. Park, and S. Bahk, “Multichannel random access in OFDMA wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 3, pp. 603–613, 2006. [43] S. Kim, J. Cha, S. Jung, C. Yoon, and K. Lim, “Performance evaluation of random access for M2M communication on IEEE 802.16 network,” in Advanced Communication Technology (ICACT), 2012 14th International Conference on. pp. 278–283. IEEE, 2012. [44] J.-B. Seo and V. C. Leung, “Design and analysis of backoff algorithms for random access channels in UMTS-LTE and IEEE 802.16 systems,” IEEE Transactions on Vehicular Technology, vol. 60, no. 8, pp. 3975–3989, 2011. [45] C.-H. Wei, R.-G. Cheng, and S.-L. Tsao, “Modeling and estimation of one-shot random access for finite-user multichannel slotted ALOHA systems,” IEEE Communications Letters, vol. 16, no. 8, pp. 1196–1199, 2012. [46] C.-H. Wei, G. Bianchi, and R.-G. Cheng, “Modeling and analysis of random access channels with bursty arrivals in OFDMA wireless networks,” IEEE Transactions on Wireless Communications, vol. 14, no. 4, pp. 1940–1953, 2015. [47] D.-J. Deng, S.-Y. Lien, J. Lee, and K.-C. Chen, “On Quality-of-Service Provisioning in IEEE 802.11 ax WLANs,” IEEE Access. [48] E. Khorov, A. Lyakhov, A. Krotov, and A. Guschin, “A survey on IEEE 802.11 ah: An enabling networking technology for smart cities,” Computer Communications, vol. 58, pp. 53–69, 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3716 | - |
| dc.description.abstract | 下一代無線區域網路802.11ax面對密集場景對接取層(MAC),物理層(PHY)層都做出巨大修改。它提出一個基於OFDMA的多通道隨機接取機制。 該論文通過拓展Bianchi的二維馬爾科夫鏈模型完成對這個基於正交頻分多址(OFDMA)的隨機接取機制的穩態的行為進行預測,預測是在飽和數據量的條件下進行的。 模擬的結果也驗證了該馬爾科夫鏈模型的準確性。最終,我們也分析了關鍵系統參數的影響,包括多通道的數量,初始競爭窗口以及最大競爭窗口大小。 | zh_TW |
| dc.description.abstract | Confronting the dense scenario, 802.11ax, the next generation WLAN, makes revolutionary modifications on both MAC and PHY layers, exploiting MU-OFDMA PHY and centralized MAC scheme. A multi-channel random access mechanism, OFDMA-based random access (OBRA) is proposed. This work extends Bianchi’s bi-dimension Markov chain model to depict the steady-state behavior of the OBRA under saturation condition. And simulations validate the accuracy of the Markov chain model. Finally, the effects of system parameters, including the number of resource units (RUs) for random access, initial and maximum contention window, are evaluated. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:36:10Z (GMT). No. of bitstreams: 1 ntu-105-R03942126-1.pdf: 1584237 bytes, checksum: 5260a4e7fc1b94841646da92980cbfd9 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 1 Introduction
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Challenge of WiFi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Solution: 802.11ax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 802.11ax Features 2.1 MU-OFDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 802.11ax Random Access Illustration . . . . . . . . . . . . . . . . . . . 14 3 System Model 3.1 Packet Transmission Probability . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Random Access Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 n s and System Efficiency . . . . . . . . . . . . . . . . . . . . . . 24 3.2.2 Access Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 4 Performance Evaluation 4.1 Maximum System Efficiency and Minimum Access Delay . . . . . . . . 27 4.2 Effects of System Parameter . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.1 RUs for Random Access M . . . . . . . . . . . . . . . . . . . . 30 4.2.2 Initial and max Contention Window (OCW min , OCW max ) . . . . 30 4.2.3 Rules for configuring {M, OCW min , OCW max } . . . . . . . . . 32 5 Conclusion and Future work . . . . . . . . .38 Bibliography. . . . . . . . .39 | |
| dc.language.iso | en | |
| dc.subject | 802.11ax | zh_TW |
| dc.subject | 多信道Aloha | zh_TW |
| dc.subject | 隨機接取 | zh_TW |
| dc.subject | 正交頻分多址 | zh_TW |
| dc.subject | 碰撞解決 | zh_TW |
| dc.subject | 802.11ax | en |
| dc.subject | multi-channel slotted Aloha | en |
| dc.subject | random access | en |
| dc.subject | collision resolution | en |
| dc.subject | OFDMA | en |
| dc.title | IEEE 802.11ax 基於OFDMA隨機接取效能分析 | zh_TW |
| dc.title | Performance Analysis of IEEE 802.11ax OFDMA-based Random Access | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 連紹宇(Shao-Yu Lien),鄧德雋(Der-Jiunn Deng),蘇炫榮(Hsuan-Jung Su) | |
| dc.subject.keyword | 多信道Aloha,隨機接取,正交頻分多址,碰撞解決,802.11ax, | zh_TW |
| dc.subject.keyword | multi-channel slotted Aloha,random access,collision resolution,OFDMA,802.11ax, | en |
| dc.relation.page | 44 | |
| dc.identifier.doi | 10.6342/NTU201700509 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2017-02-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 1.55 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
