請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37167
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張家歐(Chia-Ou Chang) | |
dc.contributor.author | Kuo-Ming Lu | en |
dc.contributor.author | 呂國銘 | zh_TW |
dc.date.accessioned | 2021-06-13T15:20:28Z | - |
dc.date.available | 2011-07-24 | |
dc.date.copyright | 2008-07-24 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-23 | |
dc.identifier.citation | [1] Appell. P., “Sur une forme generale des equations de la dynamique,” C. R. acad. Sci. Paris, 129, 459-460, 1899.
[2] Gibbs. W, “On the fundamental formulae of dynamics,” Am. J. Math. II, 49-64, 1879. [3] Lagrange. J. L, Mecanique analytique, Paris: Mme Ve Coureier. , 1787. [4] Maggi. G. A., The variation principle of mechanics, New York: Dover. 1901. [5] Ray, J. R., “Nonholonomic constraints and Gauss’s principle of least constraint,” Amer. J. Phys. 40, 179-183., 1972. [6] Udwadia. F. E., Kalaba, R. E., “A new perspective on constrained motion,” Proc. R. Soc. Lond. A 439, 407-410, 1992. [7] O’Reilly. O. M., Srinivasa. A. R., “On a decomposition of generalized constraint forces,” Proc. R. Soc. Lond. A 457, 1307-1313, 2001. [8] Udwadia. F. E., Kalaba, R. E., Analytical dynamics: a new approach, Cambridge Univ. Press, 1996. [9] Udwadia. F. E., Kalaba. R. E., Phohomsiri. P., “Mechanical systems with nonideal constraints: Explicit equations without the use of generalized inverses,” J. Appl. Mech. 71, 615-621, 2004. [10] Graybill, Franklin A, Theory and Application of the Linear Model, California Wadsworth., 34-39, 1976. [11] 王文忠, 非完整約束動力系統之分析, 國立台灣大學應用力學研究所博士論文, 1996. [12] 陳柏志, 含非完整約束之剛體系統的動力與控制分析, 國立台灣大學應用力學研究所博士論文, 2001. [13] Po-Chin Chen, Chia-Ou Chang, W.T. Chang Chien, Chan-Shin Chou, “Explicit Equations of Motion for Dynamical Systems with Multiple Constraints,” Japanese Journal of Applied Physics, Vol. 45, No. 6A, pp.5286-5292, 2006. [14] Po-Chin Chen, Chia-Ou Chang, W.T. Chang Chien, ”An alternative proof for the explicit equations of motion for mechanical systems with independent non-ideal constraints, ” AMC. 190, pp.1445-1449, 2007. [15] Zamm. Z. angew., “An Example for the Application of a Nonholonomic Constraint of Second Order in Particle Mechanics,” Math. Mech. 66. 312-314, 1986. [16] L.A. Pars, A Treatise on Analytical Dynamics, Ox Bow Press, 1979. [17] Herbert Goldstein, Charles Poole, John Safko, Classical Mechanics, 3rd , Addison Wesley, 2002. [18] Leonard Meirovitch, Methods of Analytical Dynamics, McGrew-Hill Higher Education, 1970. [19] Donald T. Greenwood, Advanced Dynamics, Cambridge, 2003. [20] E. J. Haug, Intermediate Dynamics, Prentice-Hall, Englewood Cliffs, New Jersey, 1992. [21] G. E. Forsythe, ”Solving Linear Algebraic Equations can be interesting,” Bull. Am. Math. Soc., vol. 59, pp. 299-329, 1952. [22] Bellman, Richard, Introduction to Matrix Analysis, McGraw-Hill, New York, 1960. [23] Isidori, Alberto, Nonlinear Control System, 3rd , Springer-Verlag London, 1995. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37167 | - |
dc.description.abstract | 高斯最小約束原理的物理意義就是在加速度空間中,求出約束力的最小值,進而推導出剛體系統的運動方程式,而不需藉由達朗白原理及虛位移,故能應用在求解非線性非完整約束的動力系統上。因此藉由高斯最小約束原理,可以求出線性/非線性、完整/非完整約束剛體系統的運動方程式。
本論文主要提出以角速度為主的準座標系統,並將高斯函數以及高斯最小約束原理重新改寫,將其應用在對稱性高及旋轉的剛體系統上。因此我們特別以實心球體及圓盤為例,探討一球體在一圓盤上及一圓盤在一平面上的運動情形,並針對其物理現象加以説明。 | zh_TW |
dc.description.abstract | The physical meaning of Gauss’s principle of least constraint is the actual acceleration can be obtained by minimizing the Gaussian function, which is the square of the scaled constraint forces. Thus we can get the solution of equations of motion by solving a minimizing problem without appeal to the use of virtual displacement and the D’Alembert’s principle. This perspective enables Gauss’s principle of least constraint to get the solution of motion for systems having multiple, linear and/or nonlinear, holonomic and/or nonholonomic constraints.
In this thesis, we proposed a new form of Gauss’s principle of least constraint, which is based on quasi coordinates of angular velocity, and then applied them to the rotational rigid-body systems with better symmetry. Thus we take the examples of the rigid-body ball and the disk to discuss the behavior of a ball on the surface of a rotating disk and a disk on the plane. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:20:28Z (GMT). No. of bitstreams: 1 ntu-97-R95543059-1.pdf: 695519 bytes, checksum: 694d57bfc3ee22cfa4eaffded5c5e75e (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 試委員會審定書…………………………………………………… Ⅰ
誌謝………………………………………………………………… Ⅱ 中文摘要…………………………………………………………… Ⅲ 英文摘要…………………………………………………………… Ⅳ 目錄………………………………………………………………… Ⅴ 圖表目錄…………………………………………………………… Ⅶ 符號表……………………………………………………………… Ⅸ 第一章 導論……………………………………………………… 1 第二章 高斯原理………………………………………………… 4 2.1 高斯最小約束原理…………………………………………… 4 2.1.1 一個具有無窮解的代數方程式…………………………… 4 2.1.2 約束力之顯示解…………………………………………… 6 2.1.3 高斯最小約束原理在幾何上之解釋……………………… 7 2.1.4 高斯等效純量函數Gaussian及GGA Form………………… 9 2.2 以旋轉準座標系統為主的高斯最小約束原理………… 11 第三章 實例分析………………………………………………… 16 3.1 一球體在一具有 角速度之圓盤上滾動…………………… 16 3.2 一球體在一具有 固定角速度之圓盤上滾動………………… 29 3.3 一圓盤在一平面上滾動………………………………………… 42 3.4 一質點在一圓柱上受約束之運動…………………………… 50 第四章 結論與未來工作………………………………………… 59 參考文獻…………………………………………………………… 61 附錄A………………………………………………………………… 63 附錄B………………………………………………………………… 70 附錄C………………………………………………………………… 72 附錄D………………………………………………………………… 79 附錄E………………………………………………………………… 82 作者簡歷…………………………………………………………… 89 | |
dc.language.iso | zh-TW | |
dc.title | 準座標之高斯原理在非線性動力系統之應用 | zh_TW |
dc.title | Application of Quasi-Coordinate Gauss’s Principle to Nonlinear Dynamic Systems | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 周傳心(Chan-Shin Chou) | |
dc.contributor.oralexamcommittee | 謝發華,張簡文添,陳柏志 | |
dc.subject.keyword | 高斯最小約束原理,非完整約束,非線性約束, | zh_TW |
dc.subject.keyword | Gauss’s principle of least constraint,nonholonomic constraints,nonlinear constraints, | en |
dc.relation.page | 89 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-24 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 679.22 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。