請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37157完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李雅榮(Ya-Jung Lee) | |
| dc.contributor.author | Sheng-Lun Peng | en |
| dc.contributor.author | 彭聖倫 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:20:16Z | - |
| dc.date.available | 2008-07-24 | |
| dc.date.copyright | 2008-07-24 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-24 | |
| dc.identifier.citation | [1]林和毅, 曾仁佑, “利用MM5 模式評估台灣地區風能蘊藏量之研究”, 國立中央大學大氣物理研究所碩士論文, 2000
[2]李雅榮, “複合材料力學”, 國力台灣大學工程科學及海洋工程學系暨研究所教材, 2007 [3]SP System, “SP Systems Guide to Composites”, www.spsystems.com [4]Michael Schølarth Koefoed, “Modeling and Simulation of the VARTM Process for Wind Turbine Blades”, Industrial Ph.D. Dissertation, Institute of Mechanical Engineering Aalborg University, pp. 5-9, 2003 [5]John F. Mandell, Douglas S. Cairns, Daniel D. Samborsky, Robert B. Morehead, Darrin J. Haugen, “Prediction of Delamination in Wind Turbine Blade Structural Details”, Journal of Solar Energy Engineering, Vol. 125, pp. 522-530, 2003 [6]John F. Mandell, Douglas S. Cairns, Darrin J. Haugen, Daniel D. Samborsky, “Fracture of Skin/Stiffener Intersections in Composite Wind Turbine Structures” 1998 Wind Energy Symposium, ASME/AIAA, pp. 334-343, 1998 [7]John F. Mandell, Daniel D. Samborsky, Mei Li, Ricardo Orozco, Douglas S. Cairns, “Selection of Fiberglass Matrix Resins for Increased Toughness and Environmental Resistance in Wind Turbine Blades ”, 2000 ASME Wind Energy Symposium, ASME/AIAA, AIAA-2000-0057, pp. 354-366, 2000 [8]Jon Dana Skramstad, “Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing”, Master of Science in Mechanical Engineering, Montana State University-Bozeman, 1999 [9]C. Hedley, “Application of Resin Transfer Molding to the Manufacture of Wind Turbine Blade Substructures”, Headwaters Composites Inc., Tech. Rep. DE-FG02-99ER45757, 2003 [10]M. J. Blanch, D. A. Kouroussis, A. A. Anastassopoulos, V. N. Nikolaidis, A. Proust, A. G. Dutton, L. E. Jones, P. Vionis, D. J. Lekou, D. R. V. van Delft, P. A. Joosse, T. P. Philippidis, T Kossivas, G. F. Fernando, “Damage Classification of Acoustic Emission Using Aegis Pattern Recognition Software from Ten Small Wind Turbine Blade Tests”, Proc. Of Global Windpower Conf., 2002 [11]Bent F. Sørensen, Erik Jørgensen, Christian P. Debel, Find M. Jensen, Henrik M. Jensen, Torben K. Jacobsen, Kaj M. Halling, “Improved Design of Large Wind Turbine Blade of Fibre Composites Based on Studies of Scale Effects (Phase 1) -Summary Report”, Risø National Laboratory, Risø-R-1390(EN), pp. 10-18, 2004 [12]Thomas M. Hermann, Dharmaraj Mamarthupatti, James E. Locke, “Postbuckling Analysis of a Wind Turbine Blade Substructure”, Journal of Solar Energy Engineering, Vol. 127, pp. 544-552, 2005 [13]Corey Pitchford, Benjamin L. Grisso, Daniel J. Inman, “Impedance-Based Structural Health Monitoring of Wind Turbine Blades”, Proc. of SPIE, Vol. 6532, 65321I , 2007 [14]Saeed Moaume, “Finite Element Analysis:Theory and Application with Ansys 2/E”, Pearson, 2003 [15]Moaveni, 陳新郁, “有限元素分析-理論與應用ANSYS”, 高立, 2001 [16]石亦平, “ABAQUS有限元分析實例詳解”, 機械工業, 2006.07 [17]趙騰倫, “ABAQUS6.6在機械工程中的應用”, 中國水利水電, 2007 [18]P. P. Camanho, C. G. Davila, M. F. de Moura, “Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials”, Journal of Composite Materials”, Vol. 37, pp. 1415-1438, 2003 [19]M. L. Benzeggagh, M. Kenane, “Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus”, Composites Science and Technology, Vol. 56, pp. 439–449, 1996 [20]Ted Diehl, “On Using a Penalty-Based Cohesive-Zone Finite Element Approach, Part I: Elastic Solution Benchmarks”, International Journal of Adhesion & Adhesives, Vol. 28, pp. 237-255, 2008 [21]Ted Diehl, “On Using a Penalty-Based Cohesive-Zone Finite Element Approach, Part II: Inelastic Peeling of an Epoxy-Bonded Aluminum Strip”, International Journal of Adhesion & Adhesives, Vol. 28, pp. 256-265, 2008 [22]Pedro Ponces Camanho, “Advances in the Simulation of Damage and Fracture of Composite Structures”, X Reunión de Usuarios de ABAQUS, 2005 [23]S. Li, M. D. Thouless, A. M. Waas, J. A. Schroeder, P. D. Zavattieri, “Competing Failure Mechanisms in Mixed-Mode Fracture of an Adhesively Bonded Polymer-Matrix Composite”, International Journal of Adhesion & Adhesives, Vol.26, pp. 609-616, 2006 [24]G. Alfano, M. A. Crisfield, “Finite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues”, International Journal for Numerical Methods in Engineering, Vol. 50, pp. 1701-1736, 2001 [25]Q. D. Yang, M. D. Thouless, “Mixed-Mode Fracture Analyses of Plastically-Deforming Adhesive Joints”, International Journal of Fracture, Vol. 110, pp. 175-187, 2001 [26]J. Chen, M. Crisfield, A. J. Kinloch, E. P. Busso, F. L. Mathews, Y. Qiu, “Predicting Progressive Delamination of Composite Material Specimens Via Interface Elements”, Mechanics of Composite Materials and Structures, Vol. 6, pp. 301-317, 1999 [27]B. R. K. Blackman, H. Hadavinia, A. J. Kinloch, J. G.. Williams, “The Use of a Cohesive Zone Model to Study The Fracture of Fibre Composites and Adhesively-Bonded Joints”, International Journal of Fracture, Vol. 119, pp. 25-46, 2003 [28]L. Daudeville, O. Allix, P. Ladeveze, “Delamination Analysis by Damage Mechanics: Some Applications”, Composites Engineering, Vol. 15, pp. 17-24, 1995 [29]李雅榮, 詹育禔, 劉哲元, “離岸型風力發電機FRP葉片之材料評估設計及製程模擬分析(I)”, 國立台灣大學工程科學與海洋工程學系, 2008.02 [30]“http://www.itwplexus.com/”, Plexus [31]“http://www.diabgroup.com/”, DIAB | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37157 | - |
| dc.description.abstract | 最近因石油的短缺,各國都在尋找能替代石油的再生能源,因此,造成風力發電蓬勃發展,風電葉片主要是由FRP(Fiber Reinforced Plastics)所製成,而台灣擁有FRP遊艇王國之美名,因此遊艇產業是非常適合投入風力發電葉片之製造。風力發電葉片乃是由兩半葉蒙皮,中間使用一至兩根腹樑(Shear Web)做為補強結構,因其剖面結構較為複雜,製程上需要將腹樑與蒙皮分開製造,其膠合處乃是容易造成應力集中和脫層破損的地方,因此如何設計腹樑與蒙皮膠合的最佳幾何形狀,乃是本文所要探討的重點。本文中依照風機葉片常見補強方式,設計三種接著方式,分別為I系列、L系列、T系列,將其放入夾具承受外力,觀察Shear Web與Spar Cap於不同接合方式下的接合強度與破壞行為,進而驗證數值模擬之結果。
數值模擬方面,使用有限元素分析軟體ABAQUS進行分析,於接著處,使用特殊元素Cohesive element進行分析,Cohesive element專門用來模擬兩物體間界面問題,可以用來瞭解當Shear Web與Spar Cap接著時,接著處破壞行為;試驗時,結構物內部破壞進展,無法藉由試驗觀察得知,只能由數值模擬進行觀察。最後本文藉由實驗數據的量測和有限元素法軟體進行計算,分析出最佳的膠合方式,提供船廠在生產葉片時,能有最好的選擇。 | zh_TW |
| dc.description.abstract | Because of the shortage of petroleum in the environment recently, we are looking for renewable resources to replace petroleum. The wind energy was started to pay attention. However, the main material for wind turbine blade generator is FRP (Fiber Reinforced Plastics). Therefore, the rich FRP yacht building experience make the Taiwan yacht industry suitably get involved in the process to manufacture the blades. One or two shear webs are used as a reinforced structure between the double-bladed spar caps. However, the complex section structure makes shear webs and spar caps be manufactured separately. The glue part is the weakest part and also the stress concentration part so that it is easy to delaminate. How to design the best geometry shape is what we are going to discuss. In this paper, three bonding methods (I series, L series, and T series) are designed in accordance with the common stiffener for wind turbine blade. Placed in clamping apparatus, the three series are put under external force to observe the different destruction process when shear web and spar cap are bonded with different methods. Then, based on the experiment result, we can compare with the numerical simulation manner to prove that the simulation munner is correct.
The numerical simulation is analysed with ABAQUS. Analysing the bonding points with cohesive element, which is specially used for simulating the problems of the interface between two objects, can help to understand the damage process when shear web and spar cap are bonded. In conclusion, we simulate by the finite element software and then prove by the experimental results. In the future, we will except that the best solution for geometry shape can be provided to support yacht industry when manufacturing the blades. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:20:16Z (GMT). No. of bitstreams: 1 ntu-97-R95525038-1.pdf: 3896697 bytes, checksum: 223f1708ad90b05842f31bd434f18107 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 致謝.............................................0
中文摘要........................................II Abstract.......................................III 目錄............................................IV 圖目錄..........................................VI 表目錄...........................................X 第一章 序論.....................................1 1.1 前言........................................1 1.2 文獻回顧....................................3 1.3 研究動機與方法..............................5 1.4 論文大綱....................................5 第二章 有限元素模擬分析方法....................11 2.1 有限元素法簡介.............................11 2.2 複合材料力學...............................13 2.2.1 單層積層材應力應變關係...................13 2.2.2 複合材料積層板之組成式...................15 2.3 元素之選用.................................17 2.4 Cohesive element之特性.....................18 2.5 破壞法則與破壞修正.........................20 第三章 FRP風機葉片構件接合強度試驗.............33 3.1 試驗對象...................................33 3.2 試驗裝置與方法.............................35 3.3 試驗結果...................................36 3.3.1 I字型試驗結果............................36 3.3.2 I字型含芯材試驗結果......................37 3.3.3 L字型試驗結果............................39 3.3.4 L字型含芯材試驗結果......................40 3.3.5 T字型試驗結果............................41 3.3.6 T字型含芯材試驗結果......................42 3.3.7 T字型Spar Cap採用手積法試驗結果..........43 第四章 FRP風機葉片構件接合強度分析.............75 4.1 有限元素分析模型...........................75 4.2 Cohesive element破壞強度之選用.............77 4.3 I字型試片數值模擬分析......................79 4.4 I字型含芯材試片數值模擬分析................80 4.5 L字型試片數值模擬分析......................81 4.6 L字型含芯材試片數值模擬分析................82 4.7 T字型試片數值模擬分析......................83 4.8 T字型含芯材試片數值模擬分析................84 4.9 I字型含芯材厚度變化之數值分析..............85 第五章 結論與建議 .............................103 5.1 結論......................................103 5.2 未來研究之建議............................103 參考文獻.......................................105 | |
| dc.language.iso | zh-TW | |
| dc.subject | 複合材料 | zh_TW |
| dc.subject | 風機葉片 | zh_TW |
| dc.subject | FRP | en |
| dc.subject | Wind turbine blade | en |
| dc.title | FRP風機葉片構件接合強度之探討 | zh_TW |
| dc.title | Study on the Bonding Strength of FRP Wind Turbine Blade | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳重盛,趙儒民,李應成,許首雄 | |
| dc.subject.keyword | 風機葉片,複合材料, | zh_TW |
| dc.subject.keyword | Wind turbine blade,FRP, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 3.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
