請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37150完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方偉宏 | |
| dc.contributor.author | Ting-Yu Wei | en |
| dc.contributor.author | 魏婷玉 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:20:08Z | - |
| dc.date.available | 2010-08-08 | |
| dc.date.copyright | 2008-08-08 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-24 | |
| dc.identifier.citation | Abuin, A., Zhang, H., and Bradley, A. (2000). Genetic analysis of mouse embryonic stem cells bearing Msh3 and Msh2 single and compound mutations. Mol Cell Biol 20, 149-157.
Au, K. G., Welsh, K., and Modrich, P., (1992) Initiation of methyl-directed mismatch repair. J. Biol. Chem. 267, 12142-12148 Balmain, A., and Birnie, G. D. (1979). Nick translation of mammalian DNA. Biochim Biophys Acta 561, 155-166. Bellacosa, A. (2001) Functional interactions and signaling properties of mammalian DNA mismatch repair proteins. Cell Death Differ 8, 1076-1092. Bill, C. A., Taghian, D. G., Duran, W. A., and Nickoloff, J. A. (2001) Repair bias of large loop mismatches during recombination in mammalian cells depends on loop length and structure. Mutat Res. 485, 255-265. Bruce K. Duncan. (1985) Isolation of Insertion, Deletion, and Nonsense Mutations of the Uracil-DNA Glycosylase (ung) Gene of Escherichia coli K-12. American Society for Microbiology. 164, 689-695. Carraway, M., and Marinus, M. G. (1993) Repair of Heteroduplex DNA molecules with multibase loops in Escherichia coli. J. Bacteriol. 175, 3972-3980. Chambers, S. R., Hunter, N., Louis, E. J., and Borts, R. H. (1996). The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss. Mol Cell Biol 16, 6110-6120. Cooper, D. L., Lahue, R. S., and Modrich, P. (1993). Methyl-directed mismatch repair is bidirectional. J Biol Chem 268, 11823-11829. Corrette-Bennett, S. E., Mohlman, N. L., Rosado, Z., Miret, J. J., Hess, P. M., Parker, B. O., and Lahue, R. S. (2001) Efficient repair of large DNA loops in Saccharomyces cerevisiae. Nucleic Acids Res. 29, 4134-4143 Fang, W., Wu, J.Y., and Su, M.J. (1997) Methyl-directed repair of mismatched small heterologous sequences in cell extracts from Escherichia coli. J Biol Chem 272, 22714-22720. Fang, W.H., and Modrich, P. (1993) Human strand-specific mismatch repair occurs by a bidirectional mechanism similar to that of the bacterial reaction. J Biol Chem 268, 11838-11844. Fang, W. H., Wang, B. J., Wang, C. H., Lee, S. J., Chang, Y. T., Chuang, Y. K., and Lee, C. N. (2003) DNA loop repair by Escherichia coli cell extracts. J. Biol. Chem. 278, 22446-22452. Genschel, J., Littman, S.J., Drummond, J.T., and Modrich, P. (1998) Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. J Biol Chem 273, 19895-19901. Grilley, M., Griffith, J., and Modrich, P. (1993) Bidirectional excision in methyl-directed mismatch repair. J Biol Chem 268, 11830-11837 Holmes, J., Jr., Clark, S., and Modrich, P. (1990). Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc Natl Acad Sci U S A 87, 5837-5841. Kunkel, T.A., and Erie, D.A. (2005) DNA mismatch repair. Annu Rev Biochem 74: 681-710. Lahue, R. S., Au, K. G., and Modrich, P. (1989). DNA mismatch correction in a defined system. Science 245, 160-164. Littman, S. J., Fang, W. H., and Modrich, P. (1999) Repair of large insertion/deletion heterologies in human nuclear extracts is directed by a 5’ single-strand break and is independent of the mismatch repair system. J. Biol. Chem. 274, 7474-7481. Lu, A. L., Clark, S., and Modrich, P. (1983) Methyl-directed repair of DNA base-pair mismatches in vitro. Proc. Natl. Acad. Sci. U. S. A. 80, 4639-4643. McCulloch, S. D., Gu, L., and Li, G. M. (2003) Bi-directional processing of DNA loops by mismatch repair-dependent and -independent pathways in human cells. J. Biol. Chem. 278, 3891-3896. McCulloch, S. D., Gu, L., and Li, G. M. (2003) Nick-dependent and -independent processing of large DNA loops in human cells. J. Biol. Chem. 278, 50803-50809. Modrich, P., and Lahue, R. (1996) Mismatch repair in replication fidelity, genetic recombination and cancer biology. Annu. Rev. Biochem. 65, 101-133 Oliver Fleck and Olaf Nielsen (2004) DNA repair. Journal of Cell Science 117:515-517 Palombo, F., Gallinari, P., Iaccarino, I., Lettieri, T., Hughes, M., D'Arrigo, A., Truong, O., Hsuan, J.J., and Jiricny, J. (1995) GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 268: 1912-1914. Sia, E. A., Kokoska, R. J., Dominska, M., Greenwell, P., and Petes, T. D. (1997) Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol. Cell. Biol. 17, 2851-2858. Radman, M. (1989). Mismatch repair and the fidelity of genetic recombination. Genome 31, 68-73. Umar, A., Boyer, J. C., and Kunkel, T. A., (1994) DNA loop repair by human cell extracts. Nature 266, 814-816. Wierdl, M., Dominska, M., and Petes, T. D. (1997) Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146, 769-779. 張友婷, 大腸桿菌修復髮夾核酸配對錯誤之機制 國立台灣大學91學年碩士論文 秦維璨, 大腸桿菌中大型核酸環修復路徑之分析 國立台灣大學93學年碩士論文 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37150 | - |
| dc.description.abstract | 核酸聚合酶在DNA複製過程中如發生滑動,將可能產生單股未配對的核酸環,此核酸環若未被修復會提高基因的不穩定性,甚至造成突變。過去的研究已知,核酸環修復由斷股所指引,不需鹼基配對錯誤修復系統蛋白的參與。至今為止大型核酸環修復的詳細機制仍未清楚,本研究目的即在分析大型核酸環修復的反應區段,藉以探討核酸環的修復機制。第一部分以HeLaS3人類細胞核萃取液與大型核酸環的異雙股核酸,在試管內模擬生物體內大型核酸環修復的發生,並分析發生修復的位置及活性。為研究其修復路徑,在修復反應的過程中,藉著不提供dNTPs或使用dNTPαS來限制修復反應的進行,擷取中間產物,並以鹼性瓊脂膠和南方墨點法進行初步分析。結果發現缺乏dNTP將無法進行核酸環修復,而以dNTPαS作用的中間產物訊號只侷限在斷股處。第二部分則以dUTP取代dTTP,於大腸桿菌BD2314 (ung-) 細胞萃取物中進行修復反應,利用其移除uracil功能缺陷的特性,將dUTP嵌入修復路徑中,接著使用uracil glycosylase和AP endonuclease將dUTP移除並打斷該處的鍵結,用同樣方式分析中間產物。初步結果發現大型核酸環修復的中間產物位在斷股和核酸環之間。為了找出詳細的核酸環修復範圍,將反應產物以NheI及SspI做雙重切割,再利用8.3 M urea-5% polyacrylamide gel對信號所在區域做高解析度的分析,結果發現中間產物訊號位在核酸環附近。綜合以上結果,我們推測在大腸桿菌中,大型核酸環的修復可能藉由斷股指引,在核酸環附近進行局部核酸移除和再合成。 | zh_TW |
| dc.description.abstract | DNA loop heterologies are products of DNA polymerase slippage during DNA replication. Such DNA loop heterologies may lead to genomic instability if unrepaired. Previous results have shown that loop repair is nick-directed and independent of the mismatch repair proteins. However, the mechanism of large loop repair is still not clear. To investigate the repair process of large DNA loop, I analyed the repair patch of large loop repair. In the first part, I treated loop heterologies with HeLaS3 human nuclear cell extract to repair large DNA loop in vitro. I trapped repair intermediates by omitting dNTPs. I also did the repair patch mapping by using thiophosphate chemistry by addition of dNTPαS in the reaction. The repair products and intermediates were resolved by alkaline agarose gel electrophoresis and indirect labeling by southern blotting. These results showed that large loop repair is blocked when dNTPs is limited, and the repair reaction is limited to nick when dNTPαS is added. In the second part, I used E. coli cell extracts to study bacterial loop repair process. I replaced dTTP to dUTP in repair reaction, and treated DNA loop substrate with extract of BD2314, a ung- stain of E. coli, then used uracil glyscosylase and AP endonuclease to remove U and broke the phosphate bond. The breakage point was resolved on alkaline agarose gel. These data showed that the repair patch is between loop and nick. I further fine mapped the breakage sites by denaturing polyacylamide gel electrophoresis. I found that the repair synthesis is localized within the loop region. These data indicated that large loop repair in E. coli is nick-directed, and the base excison and resynthesis is localized around the loop. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:20:08Z (GMT). No. of bitstreams: 1 ntu-97-R95424022-1.pdf: 1244637 bytes, checksum: 74815e32e3dbb1878f496718f3a012ac (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 總目次
總目次 I 圖目次 III 表目次 IV 中文摘要 1 英文摘要 2 縮寫表 3 前言 5 材料與方法 10 ㄧ、菌株 10 二、大腸桿菌細胞萃取物之製備 10 三、人類細胞株之繼代培養 11 四、人類細胞核萃取液之製備 11 五、突變噬菌體f1p mutant之建構 13 六、f1p系列雙股核酸之製備 13 七、f1p系列單股核酸之製備 14 八、具斷股之異雙股核酸之製備 15 九、試管中之修復反應 16 十、探針標定之方法 17 十一、修復反應之中間產物之擷取 18 十二、修復反應中間之低解析度分析 18 十三、修復反應產物之高解析度分析 19 十四、以南方墨點進行反應物之間接標定 19 結果 20 一、具斷股異雙股核酸的製備 20 二、人類單股環異雙股核酸修復之試管中分析 20 三、修復反應中間產物之初步分析 21 四、以ung-大腸桿菌細胞萃取物之修復活性分析 21 五、修復反應中間產物之初步分析 22 六、DNA ladder的製備 22 七、修復反應中間產物之高解析分析 22 八、以遠距離斷股進行修復區段分析 23 討論 24 附圖 28 附表 41 參考文獻 43 圖目次 圖一、大腸桿菌的鹼基配對錯誤修復系統 28 圖二、人類細胞的鹼基配對錯誤修復系統 29 圖三、異雙股核酸製備之流程 30 圖四、含核酸環之異雙股核酸 31 圖五、含核酸環之異雙股核酸 32 圖六、試管中修復反應之情況 33 圖七、試管中修復反應之分析 34 圖八、大型核酸環修復的中間產物之初步分析 35 圖九、BD2314細胞萃取物之修復活性分析 36 圖十、大型核酸環修復的中間產物之初步分析 37 圖十一、DNA ladder的製備 38 圖十二、大型核酸環修復的修復區塊之高解析度分析 39 圖十三、以遠距離斷股進行修復區段分析 40 表目次 表一、探針之序列及結合位置 41 表二、異雙股核酸的種類 42 | |
| dc.language.iso | zh-TW | |
| dc.subject | 大型核酸環修復 | zh_TW |
| dc.subject | 修復反應區段 | zh_TW |
| dc.subject | 尿嘧啶 | zh_TW |
| dc.subject | 鹼性瓊脂凝膠 | zh_TW |
| dc.subject | 聚丙醯胺凝膠 | zh_TW |
| dc.subject | dUTP | en |
| dc.subject | polyacrylamide gel | en |
| dc.subject | alkaline agarose gel | en |
| dc.subject | large loop repair | en |
| dc.subject | repair path | en |
| dc.title | 核酸環修復之反應區段分析 | zh_TW |
| dc.title | Repair Patch Analysis of Large Loop Repair | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許濤,高照村,蔡芷季 | |
| dc.subject.keyword | 大型核酸環修復,修復反應區段,尿嘧啶,鹼性瓊脂凝膠,聚丙醯胺凝膠, | zh_TW |
| dc.subject.keyword | large loop repair,repair path,dUTP,alkaline agarose gel,polyacrylamide gel, | en |
| dc.relation.page | 46 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
