請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37141完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊西苑(Hsi-Yuan Yang) | |
| dc.contributor.author | Georgiana Cho-Chen Wu | en |
| dc.contributor.author | 吳卓臻 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:19:57Z | - |
| dc.date.available | 2008-07-30 | |
| dc.date.copyright | 2008-07-30 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-23 | |
| dc.identifier.citation | Alvarado-Bremer, J.R., 1994. Assessment of morphological and genetic variation of the swordfish (Xiphias gladius Linnaeus): evolutionary pattern of nucleotide substitution in the mitochondrial genome. PhD Thesis University of Toronto, Ontario, Canada.
Alvarado-Bremer, J.R., Mejuto, J., Baker, A.J., 1995. Mitochondrial DNA control region sequences indicate extensive mixing of swordfish (Xiphias gladius) populations in the Atlantic Ocean. Can. J. Fish. Aquat. Sci. 52, 1720-1732. Alvarado-Bremer, J.R., Mejuto, J., Greig, T.W., Ely, B., 1996. Global population structure of the swordfish (Xiphias gladius L.) as revealed by analysis of the mitochondrial DNA control region. J. Exp. Mar. Biol. Ecol. 197, 295-310. Alvarado-Bremer, J.R., Naseri, I., Ely, B., 1997. Orthodox and unorthodox phylogenetic relationships among tunas revealed by the nucleotide sequence analysis of the mitochondrial DNA control region. J. Fish Biol. 50, 540-554. Alvarado-Bremer, J.R., Stequert, B., Robertson, N.W., Ely, B., 1998. Genetic evidence for inter-oceanic subdivision of bigeye tuna (Thunnus obesus) populations. Mar. Biol. 132, 547-557. Alvarado-Bremer, J.R., Vinas, J., Mejutoc, J., Ely, B., Pla, C., 2005. Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol. Phyl. Evol. 36, 169-187 Appleyard, S.A., Ward, R.D., Grewe, P.M., 2002. Genetic stock structure of bigeye tuna in the Indian Ocean using mitochondrial DNA and microsatellites. J. Fish Biol. 60, 767-770. Arrizabalaga, H., Costas, E., Juste, J., Gonzalez-Garces, A., Nieto, B. & Lopez-Rodas, V., 2004. Population structure of albacore Thunnus alalunga inferred from blood groups and tag-recapture analyses. Mar. Ecol. Prog. Ser. 282, 245-252 Attardi, G., 1985. Animal mitochondrial DNA: an extreme example of genetic economy. Rev. Cyt. 93, 93-145. Avise, J., 1998. Phylogeography. Cambridge, Mass: Harvard University Press. Baker, C.S., Perry, A., Chambers, G.K., Smith, P.J., 1995. Population variation in the mitochondrial cytochrome b gene of the orange roughy Holplosethus atlanticus and the hoki Macruronus novaezelandiae. Marine Biology 122, 503-509. Bartoo, N., Foreman, T.J., 1994. A review of the biology and fisheries for North Pacific albacore (Thunnus alalunga). FAO Fish. Tech. Pap. 336, 173-187. Brown, W.M., 1985. The mitochondrial geome of animals. In Molecular Evolutionary Genetics, ed. R.J. MacIntyre, New York, London: Plenum, pp.95-130. Brown, G.G., Gadaleta, G., Pepe, G., Saccone, C., Sbisa, E., 1986. Structural conservation and variation in the d-loop-containing region of vertebrate mitochondrial DNA. J. Mol. Biol. 192, 503-511 Buonnacorsi, V.P., McDowell, J.R., Graves, J.E., 2001. Reconciling patterns of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans). Mol. Ecol. 10, 1179-1196. Carlsson, J., McDowell, J.R., Diaz-Jaimes, P., Carlsson, J.E., Boles, S.B., Gold, J.R., Graves, J.E., 2004. Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Mol. Ecol. 13, 3345-3356. Chiang, H.C., Hsu, C.C., Lin, H.D., Ma, G..C., Chiang, T.Y. and Yang, H.Y., 2006. Population structure of bigeye tuna (Thunnus obesus) in the South China Sea, Philippine Sea and western Pacific Ocean inferred from mitochondrial DNA. Fish. Res. 79, 219-225. Chiang, H.C., Hsu, C.C., Wu, Georgiana C.C., Chang, S.K., Yang, H.Y., 2008. Population structure of bigeye tuna (Thunnus obesus) in the Indian Ocean inferred from mitochondrial DNA. Fish. Res. 90, 305-312. Chow, S., Ushiama, H., 1995. Global population structure of albacore (Thunnus alalunga) inferred by RFLP analysis of the mitochondrial ATPase gene. Mar. Biol. 123, 39-45. Chow, S., Okamoto, H., Miyabe, N., Hiramatsu, K., Barut, N., 2000. Genetic divergence between Atlantic and Indo-Pacific stocks of bigeye tuna (Thunnus obesus) and admixture around South Africa. Mol. Ecol. 9, 221-227. Clary, D.O., Volstenhoime, D.R., 1985. The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J. Mol. Evol. 22, 252-271. Collette, B., Nauen, C., 1983. Scombrids of the world - An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO Sp. Cat. 2, 137. Dalebout, M.L., Helden, V.A., Waerebee, V.K., Baker, C.S., 1998. Molecular genetic identification of southern hemisphere beaked whales (Cetacea: Ziphiidae). Mol. Ecol. 7, 687-694. Durand, J.D., Collet, A., Chow, S., Guinand, B., Borsa, P., 2005. Nuclear and mitochondrial DNA markers indicate unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna (Thunnus obesus) populations, and their admixture off southern Africa. Mar. Biol..147, 313-322. EiZirik, E., Bonatto, S.L., Johnson, W.E., Crawshaw, Jr. P.G., Vie, J.C., Brousset, D.M., O’Brien S.J., Salzano, F.M., 1998. Phylogeographic patterns and evolution of the mitochondrial DNA control region in two neotropical cats (Mammalia, Felidae). J. Mol. Evol. 47, 613-624. Excoffier, L., Smouse, P.E., Quattro, J.M., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479-491. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using bootstrap. Evolution 39, 783-791. Finnerty, J.R., Block, B.A., 1992. Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans). Mol. Mar. Biol. Biotechnol. 1, 206-214. Fu, Y.X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915-925. Grant, W.S., Bowen, B.W., 1998. Population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered. 89, 415-426. Graur, Li., W.H., 1999. Fundamentals of Molecular Evolution. Sinauer. Graves, J.E., Mcdowell, J.R., 1995. Inter-ocean genetic-divergence of istiophorid billfishes. Mar. Biol. 122, 193-203. Gray, W.M., 1989. Origin and evolution of mitochondrial DNA. Annu Rev. Cell Biol. 5, 25-50. Grewe, P., Hampton, J., 1998. An assessment of bigeye (Thunnus obesus) population structure in the Pacific Ocean, based on mitochondrial DNA and DNA microsatellite analysis. SPEST Publication 98-05, JIMAR Contribution 98-320. Guo, S., Thompson, E., 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48, 361-372. Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98. Harpending, R.C., 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum. Biol. 66, 591-600. Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120. Kumar, S., Tamura, K., Nei, M., 2004. MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment. Brief. Bioinform. 5, 150-163. Kume, S., 1974. Tuna fisheries and their resources in the Pacific Ocean. Indo-Pacif. Fish. Coun. Proc. 15, 390-423. Lucchini, V., Randi, E., 1998. Mitochondrial DNA sequence variation and phylogeographical structure of rock partridge (Alectoris graeca) populations. Heredity 81, 528-536. Lynch, M., Crease, T.J., 1990. The analysis of population survey data on DNA sequence variation. Mol. Biol. Evol. 7, 337-394. Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209-220. Martinez, P., Gonzalez, E.G., Castilho, R., 2005. Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Mol. Phylogenet. Evol. 39, 404-416. Moritz, C., Brown, W.M., 1987. Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc. Natl. Acad. Sci. USA 84, 7183-7187. Murphy, W.J., Eizirlk, E., Johnson, W.E., Zhang, Y.P., Ryder, O.A., O’Brien, S.J., 2001. Molecular phylogenetics and the origins of placental mammals. Nature 409, 614-618. Murray, T., 1994. A review of the biology and fisheries for albacore, Thunnus alalunga, in the South Pacific Ocean. FAO Fish. Tech. Pap., 336 (2): 188-206. Nakamura, H., 1969. Tuna distribution and migration. Fishing News (Books) Ltd., London, UK. Nakadate, M., Vinas, J., Corriero, A., Clarke, S., Suzuki, N., Chow, S., 2005. Genetic isolation between Atlantic and Mediterranean albacore populations inferred from mitochondrial and nuclear DNA markers. J. Fish Biol. 66, 1545-1557. doi:10.1111/j.1095-8649.2005.00705.x Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York. Nesbo, C.L., Rueness, E.K., Iversen, S.A., Skagen, D.W., Jakobsen, K.S., 2000. Phylogeography and population history of Atlantic mackerel (Scomber scombrus L.): a genealogical approach reveals genetic structuring among the eastern Atlantic stocks. Proc. R. Soc. Lond., B 267, 281-292. Okimoto, R., Macfarlance, J.L., Cla, D.O., Wolstenholme, D.R., 1992. The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130, 471-498. Page, R.D.M., Holmes, E.C., 1998. Molecular Evolution: A phylogenetic Approach. Blackwell Science Ltd., Oxford, UK. Pujolar, J.M., Roldan, M.I., Pla, C., 2003. Genetic analysis of tuna populations Thunnus thynnus thynnus and T. alalunga. Mar. Biol. 143, 613-621. Rand, D.M., 1996. Neutrality tests of molecular markers and the connections between DNA polymorphism, demography, and conservation biology, Cons. Biol. 10, 665-671. Ramos-Onsins, S.E., Rozas, J., 2002. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092-2100. Riginos, C., Nachman, 2001. Populations subdivision in marine environments: the contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennoid fish, Axoclinus nigricaudus. Mol. Ecol. 10, 1439-1453. Rogers, A.R., Harpending, H., 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552-569. Rogers, A.R., 1995. Genetic evidence for a Pleistocene population explosion. Evolution 49, 608-615. Rosel, P.E., Block, B.A., 1996. Mitochondrial control region variability and global population structure in the swordfish, Xiphias gladius. Mar. Biol. 125, 11-22 Rozas, J., Sanchez-Del Barrio, J.C., Messeguer, X., Rozas, R., 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496-2497. Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol. Biol. Evol. 4: 406-425. Schneider, S., Excoffier, L., 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152, 1079-1089. Schneider, S., Roessli, D., Excoffier, L., 2000. ARLEQUIN, Version 2.000: A software for population genetics data analysis. University of Geneva, Switzerland. Slatkin, M., Hudson, R.R., 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555-562. Smouse, P. E., Long, J. C., Sokal, R. R., 1986. Multiple regression and correlation extensions of the Mantel Test of matrix correspondence. Syst. Zool. 35, 627-632. Southern, S., Peter, J.S., Andrew, E.D., 1988. Molecular characterization of a cloned dolphin mitochondrial genome. J. Mol. Evol. 28, 32-42. Tajima, F., 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437-460. Tajima, F., 1989a. The effect of change in population size on DNA polymorphism. Genetics 123, 597-601. Tajima, F., 1989b. Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595. Takagi, M., Okamura, T., Chow, S., Taniguchi, N., 2001. Preliminary study of albacore (Thunnus alalunga) stock differentiation inferred from microsatellite DNA analysis. Fish. Bull. US 99, 697-701 Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. Uosaki, K., Bayliff, W.H., 1999. A review of the Japanese longline fishery for tunas and billfishes in the eastern Pacific Ocean, 1988-1992. Inter-Amer. Trop. Tuna Comm. Bull. 21, 273-488. Vinas, J., Santiago, J., Pla, C., 1999. Genetic characterization and Atlantic-Mediterranean stock structure of albacore, Thunnus alalunga. ICCAT Collect. Vol. Sci. Pap. 49, 188-191. Vinas, J., Alvarado Bremer, J.R., Pla, C., 2004. Inter-oceanic genetic differentiation among albacore (Thunnus alalunga) populations. Marine Biology 145, 225-232 Watterman, M.S., Eggert, M., Lander, E., 1992. Parametric sequence comparisons. Proc. Natl. Acad. Sci. 89, 6090-6093. Watterson, G., 1975. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7, 256-276. Wright, S., 1951. The genetical structure of population. Ann. Eugen. 15, 323-354. Wright, S., 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395-420. Yeh, S.Y., Hui, C.F., Tseng, T.D., Kuo, C. L., 1996. Indian Ocean albacore stock structure studies by morphometric and DNA sequence methods. IPTP Collect. 9, 258-263. Zardoya, R., Castilho, R., Grande, C., Favre-Krey, L., Caetano, S., Marcato, S., Krey, G., Patarnello, T., 2004. Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea. Mol. Ecol. 13, 1785–1798. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37141 | - |
| dc.description.abstract | 長鰭鮪(Thunnus alalunga),俗名白肉串,為一高度洄游之魚種,主要分布於太平洋,大西洋,印度洋45°N與50°S間之熱帶及溫帶海域,適水溫域為13.5°C與25.2°C之間,為高經濟價值魚種,亦為世界漁業之主要漁獲對象,因此該魚種族群結構與來源之探索及瞭解,將有助於其資源之評估、管理與利用。本研究利用粒線體基因標記之生物技術方法,鑑定西北太平洋長鰭鮪之族群結構,並探討其親緣關係。本研究採集了西北太平洋三個採樣區(台灣、日本、夏威夷)之長鰭鮪肌肉樣本,萃取其粒線體DNA (mtDNA),利用特定引子(primer),針對mtDNA全段控制區約860個鹼基對,以PCR反應,將mtDNA控制區放大並定序,成功得到共175個長鰭鮪mtDNA控制區序列。所得控制區序列以Clustal X軟體逕行分析比對,隨後,將此不同的單倍基因型以Kimura 2-Parameter model方法建構所的長鰭鮪但被基因型之親緣關係樹。NJ樹形的可信度以1000次重複的bootstrap法進行統計檢測。結果顯示:親緣關係樹可將西北太平洋海域三個採樣區之長鰭鮪分為兩個clades: Clade I包含多數(98%)之長鰭鮪單倍基因型; Clade II則包含相當少量(2%)之長鰭鮪單倍基因型。另外,Clade I內又分為兩支lineages: Lineage I及Lineage II。AMOVA與F-statistics分析結果顯示西北太平洋長鰭鮪族群之族群遺傳結構分化情況並不顯著,即西北太平洋內為單一系群,且三海域之長鰭鮪兼有基因交流的現象。 | zh_TW |
| dc.description.abstract | Albacore (Thunnus alalunga) is a highly migratory cosmopolitan fish commonly distributed throughout tropical, subtropical and temperate areas of all oceans including the Mediterranean Sea. Due to its commercial and economic importance, a better understanding of its genetic structure is essential to an effective fishery management. In the current study, population structure of albacore in the Northwestern Pacific Ocean was investigated using mitochondrial DNA control region (D-loop) sequence data specifically of the first hypervariable region (HVR-1).
A total of 175 individuals were caught and sampled from three regions in the Northwestern Pacific Ocean (Taiwan, Japan and Hawaii). Total DNA of each sample was isolated and purified. With the use of specific primers, the entire mtDNA control region was amplified through Polymerase Chain Reaction. The mtDNA were aligned using ClustalX and 168 haplotypes were revealed. Neighbor-joining tree based on the Kimura 2-parameters model was constructed using MEGA with 1000 bootstrap replicates. The reconstructed neighbor-joining phylogeny tree based on sequencing data of these 175 samples suggested that albacore haplotypes in these three sampling regions can be divided into two main clades (Clade I and Clade II) with one clade (Clade I) further sub-divided into two lineages (Lineage I and Lineage II). Hierarchical AMOVA tests and pairwise FST analysis showed that albacore tuna in the Northwestern Pacific Ocean constituted a single stock with no significant differences in geographic distributions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:19:57Z (GMT). No. of bitstreams: 1 ntu-97-R94b43030-1.pdf: 621595 bytes, checksum: 2f35bd128ac2417e9cee67b2011abf55 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員審定書.............................................i
謝詞......................................................ii 中文摘要.................................................iii Abstract..................................................iv Introduction...............................................1 1.Albacore.................................................1 2. Background..............................................2 3. Mitochondrial DNA (mtDNA)...............................5 4. Mitochondrial DNA in population genetics................6 5. Mitochondrial DNA control region segment (D-loop).......7 6. The present study.......................................9 Materials and Methods.....................................11 1. Sampling...........................................11 2. DNA extraction.....................................11 3. Polymerase chain reaction (PCR)....................13 4. DNA sequencing.....................................14 5. Data Analysis......................................15 5-1. Alignment.....................................15 5-2. Nucleotide composition........................16 5-3. Constructing phylogenetic trees...............16 5-4. Estimating diversity values...................17 5-5. Genetic structure.............................19 5-6. Analyzing Population History..................21 Results...................................................23 1. Sampling...........................................23 2. DNA primer.........................................23 3. DNA amplification and sequencing...................24 4. Data analysis......................................24 A. Molecular characteristics.......................25 B. Phylogeny and Patterns of population structure..26 C. Demographic patterns............................28 Discussion................................................30 References................................................37 Figures...................................................49 Tables....................................................52 Figure Contents Fig. 1 Map showing the T. alalunga sampling areas under study.....................................................49 Fig. 2 Neighbor-joining tree estimated with the Kimura-2-Parameter (K2P) model among mtDNA lineages of T. alalunga. Haplotypes were collected from the Northwestern Pacific Ocean (Taiwan, Japan and Hawaii). Numbers at nodes indicate the bootstrap values. Only values >50% are shown.....................................................50 Fig. 3 Observed, growth-decline model, and constant population model mismatch distributions for all pairwise combinations of: the entire mitochondrial control region data set, 175 individuals; Clade I – Lineage I, 94 individuals; Clade I – Lineage II, 77 individuals; Clade II, 4 individuals….......................................51 Table Contents Table 1 Descriptive statistics for the studied T. alalunga samples..........................................52 Table 2 Genetic structuring of T. alalunga populations based on mitochondrial control region sequence data......................................................53 Table 3 Matrix of pairwise FST (below diagonal) and associated p (above diagonal) values among T. alalunga phylogroups based on mitochondrial control region sequence data......................................................54 Table 4 Statistical tests of neutrality, and demographic parameters estimates for T. alalunga’s entire mitochondrial control region data set, and phylogroups...............................................55 | |
| dc.language.iso | en | |
| dc.subject | 長鰭鮪 | zh_TW |
| dc.subject | 粒線體基因 | zh_TW |
| dc.subject | 控制區 | zh_TW |
| dc.subject | 族群遺傳 | zh_TW |
| dc.subject | 西北太平洋 | zh_TW |
| dc.subject | population genetics | en |
| dc.subject | Northwestern Pacific Ocean | en |
| dc.subject | control region | en |
| dc.subject | mitochondrial DNA | en |
| dc.subject | Albacore (Thunnus alalunga) | en |
| dc.title | 以粒線體DNA標記建立西北太平洋長鰭鮪之族群結構 | zh_TW |
| dc.title | Population structure of albacore (Thunnus alalunga) in the Northwestern Pacific Ocean inferred from mitochondrial DNA | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許建宗(Chien-Chung Hsu),黃步敏(Bu-Miin Huang) | |
| dc.subject.keyword | 長鰭鮪,粒線體基因,控制區,族群遺傳,西北太平洋, | zh_TW |
| dc.subject.keyword | Albacore (Thunnus alalunga),population genetics,mitochondrial DNA,control region,Northwestern Pacific Ocean, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-24 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 607.03 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
