請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37135
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 閔明源(Ming-Yuan Min) | |
dc.contributor.author | Hsiao-Hui Yeh | en |
dc.contributor.author | 葉筱慧 | zh_TW |
dc.date.accessioned | 2021-06-13T15:19:50Z | - |
dc.date.available | 2010-08-04 | |
dc.date.copyright | 2008-08-04 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-24 | |
dc.identifier.citation | 1. Jones, S.W., Overview of voltage-dependent calcium channels. J Bioenerg
Biomembr, 1998. 30(4): p. 299-312. 2. Yamakage, M. and A. Namiki, Calcium channels--basic aspects of their structure, function and gene encoding; anesthetic action on the channels--a review. Can J Anaesth, 2002. 49(2): p. 151-64. 3. Arikkath, J. and K.P. Campbell, Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr Opin Neurobiol, 2003. 13(3): p. 298-307. 4. Campbell, K.P., A.T. Leung, and A.H. Sharp, The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci, 1988. 11(10): p. 425-30. 5. Sharp, A.H. and K.P. Campbell, Characterization of the 1,4-dihydropyridine receptor using subunit-specific polyclonal antibodies. Evidence for a 32,000-Da subunit. J Biol Chem, 1989. 264(5): p. 2816-25. 6. Jorgensen, A.O., et al., Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ: an immunofluorescence and immunocolloidal gold-labeling study. J Cell Biol, 1989. 109(1): p. 135-47. 7. Gurnett, C.A., M. De Waard, and K.P. Campbell, Dual function of the voltage-dependent Ca2+ channel alpha 2 delta subunit in current stimulation and subunit interaction. Neuron, 1996. 16(2): p. 431-40. 8. Klugbauer, N., et al., Molecular diversity of the calcium channel alpha2delta subunit. J Neurosci, 1999. 19(2): p. 684-91. 9. Walker, D. and M. De Waard, Subunit interaction sites in voltage-dependent Ca2+ channels: role in channel function. Trends Neurosci, 1998. 21(4): p. 148-54. 10. De Waard, M., M. Pragnell, and K.P. Campbell, Ca2+ channel regulation by a conserved beta subunit domain. Neuron, 1994. 13(2): p. 495-503. 11. Pragnell, M., et al., Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. Nature, 1994. 368(6466): p. 67-70. 12. Wissenbach, U., et al., The structure of the murine calcium channel gamma-subunit gene and protein. Biol Chem, 1998. 379(1): p. 45-50. 13. Ursu, D., et al., Altered inactivation of Ca2+ current and Ca2+ release in mouse muscle fibers deficient in the DHP receptor gamma1 subunit. J Gen Physiol, 2004. 124(5): p. 605-18. 14. Maier, L.S. and D.M. Bers, Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond. J Mol Cell Cardiol, 2002. 34(8): p. 919-39. 15. Mukherjee, R. and F.G. Spinale, L-type calcium channel abundance and function with cardiac hypertrophy and failure: a review. J Mol Cell Cardiol, 1998. 30(10): p. 1899-916. 16. Strube, C., Absence of regulation of the T-type calcium current by Cav1.1, beta1a and gamma1 dihydropyridine receptor subunits in skeletal muscle cells. Pflugers Arch, 2008. 455(5): p. 921-7. 17. Gach, M.P., et al., Alpha2delta1 dihydropyridine receptor subunit is a critical element for excitation-coupled calcium entry but not for formation of tetrads in skeletal myotubes. Biophys J, 2008. 94(8): p. 3023-34. 18. Weissgerber, P., et al., Reduced cardiac L-type Ca2+ current in Ca(V)beta2-/- embryos impairs cardiac development and contraction with secondary defects in vascular maturation. Circ Res, 2006. 99(7): p. 749-57. 19. Kang, M.G. and K.P. Campbell, Gamma subunit of voltage-activated calcium channels. J Biol Chem, 2003. 278(24): p. 21315-8. 20. Tanabe, T., et al., Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature, 1988. 336(6195): p. 134-9. 21. Freise, D., et al., Absence of the gamma subunit of the skeletal muscle dihydropyridine receptor increases L-type Ca2+ currents and alters channel inactivation properties. J Biol Chem, 2000. 275(19): p. 14476-81. 22. Andronache, Z., et al., The auxiliary subunit gamma 1 of the skeletal muscle L-type Ca2+ channel is an endogenous Ca2+ antagonist. Proc Natl Acad Sci U S A, 2007. 104(45): p. 17885-90. 23. Ursu, D., et al., Excitation-contraction coupling in skeletal muscle of a mouse lacking the dihydropyridine receptor subunit gamma1. J Physiol, 2001. 533(Pt 2): p. 367-77. 24. Arikkath, J., et al., Gamma 1 subunit interactions within the skeletal muscle L-type voltage-gated calcium channels. J Biol Chem, 2003. 278(2): p. 1212-9. 25. Letts, V.A., et al., The mouse stargazer gene encodes a neuronal Ca2+-channel gamma subunit. Nat Genet, 1998. 19(4): p. 340-7. 26. Burgess, D.L., et al., Identification of three novel Ca(2+) channel gamma subunit genes reveals molecular diversification by tandem and chromosome duplication. Genome Res, 1999. 9(12): p. 1204-13. 27. Klugbauer, N., et al., A family of gamma-like calcium channel subunits. FEBS Lett, 2000. 470(2): p. 189-97. 28. Chu, P.J., H.M. Robertson, and P.M. Best, Calcium channel gamma subunits provide insights into the evolution of this gene family. Gene, 2001. 280(1-2): p. 37-48. 29. Ahern, C.A., et al., Modulation of L-type Ca2+ current but not activation of Ca2+ release by the gamma1 subunit of the dihydropyridine receptor of skeletal muscle. BMC Physiol, 2001. 1: p. 8. 30. Qiao, X.X. and J.L. Noebels, Genetic and phenotypic heterogeneity of inherited spike-wave epilepsy: two mutant gene loci with independent cerebral excitability defects. Brain Res, 1991. 555(1): p. 43-50. 31. Noebels, J.L., et al., Stargazer: a new neurological mutant on chromosome 15 in the mouse with prolonged cortical seizures. Epilepsy Res, 1990. 7(2): p. 129-35. 32. Blackshaw, S., et al., Genomic analysis of mouse retinal development. PLoS Biol, 2004. 2(9): p. E247. 33. Letts, V.A., et al., A targeted mutation in Cacng4 exacerbates spike-wave seizures in stargazer (Cacng2) mice. Proc Natl Acad Sci U S A, 2005. 102(6): p. 2123-8. 34. Moss, F.J., et al., The novel product of a five-exon stargazin-related gene abolishes Ca(V)2.2 calcium channel expression. EMBO J, 2002. 21(7): p. 1514-23. 35. Hansen, J.P., et al., Calcium channel gamma6 subunits are unique modulators of low voltage-activated (Cav3.1) calcium current. J Mol Cell Cardiol, 2004. 37(6): p. 1147-58. 36. Rouach, N., et al., TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nat Neurosci, 2005. 8(11): p. 1525-33. 37. Cho, C.H., et al., Two families of TARP isoforms that have distinct effects on the kinetic properties of AMPA receptors and synaptic currents. Neuron, 2007. 55(6): p. 890-904. 38. Kato, A.S., et al., New transmembrane AMPA receptor regulatory protein isoform, gamma-7, differentially regulates AMPA receptors. J Neurosci, 2007. 27(18): p. 4969-77. 39. Hatano, S., et al., Molecular and electrophysiological differences in the L-type Ca2+ channel of the atrium and ventricle of rat hearts. Circ J, 2006. 70(5): p. 610-4. 40. Cingolani, E., et al., Gene therapy to inhibit the calcium channel beta subunit: physiological consequences and pathophysiological effects in models of cardiac hypertrophy. Circ Res, 2007. 101(2): p. 166-75. 41. Nakayama, H., et al., Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest, 2007. 117(9): p. 2431-44. 42. Harrell, M.D., et al., Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development. Physiol Genomics, 2007. 28(3): p. 273-83. 43. Brette, F., et al., Ca2+ currents in cardiac myocytes: Old story, new insights. Prog Biophys Mol Biol, 2006. 91(1-2): p. 1-82. 44. Wang, Z., et al., Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol, 2005. 23(3): p. 321-8. 45. Sandoval, A., et al., Inhibition of recombinant N-type Ca(V) channels by the gamma 2 subunit involves unfolded protein response (UPR)-dependent and UPR-independent mechanisms. J Neurosci, 2007. 27(12): p. 3317-27. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37135 | - |
dc.description.abstract | 電位相關性鈣離子通道對於調控許多生理功能扮演重要的角色, 像是調控
神經傳導物質的釋放、肌肉收縮、細胞內訊息傳遞、赫爾蒙分泌以及影響發育過 程。目前已知有兩大類電位性相關鈣離子通道, 一類是受低電位刺激活化, 像 Cav3 (T 型)鈣離子通道, 另一類是在較高電位活化的Cav1 跟Cav2 (L、N、P/Q、 R 型)鈣離子通道。T 型鈣離子通道主要分布在心臟跟神經, 而N 及P/Q 型主要 分布在神經, R 型通道受限於研究方法, 目前對它的了解還不多, 但主要也是分 布在神經, 而L 型鈣離子通道分布範圍很廣, 像是骨骼肌跟心肌。過去的研究已 經知道, 經由這些電位相關性鈣離子通道(主要為Cav1.2)進入心肌細胞內的鈣 離子會起始興奮收縮偶合的過程。另外, 也有研究指出在心臟出現肥大或是衰竭 的時候, 這些L 型鈣離子通道扮演了相當重要的角色。 經由分子生物領域的研究, 我們知道L 型鈣離子通道是由四個次級單元組 成, 主要有形成孔洞的α1 次級離子, 跟三個附屬次級離子: α2δ, β 以及γ。而α2δ 與β 已經被證實可以調控鈣離子通道的質性, 像是影響通道的動能。γ subunits 目 前比較有被研究的是大量表現在骨骼肌的γ1 次級單元以及主要影響神經功能的 γ2, 它們都被證實可以影響電位相關性鈣離子通道的質性, 而根據基因序列分析, 目前共有八種γ 次級單元, 其中γ6 的序列相關性與γ1 非常相似, 在骨骼肌跟心 臟的分布也已經被報導。然而, γ6 對鈣離子通道的影響仍然不清楚。2004 年有一 個研究指出γ6 可以調控Cav3.1 的功能, 而Cav3.1 在心臟有大量分布, 因此γ6 可能藉由對Cav3.1 的調控來影響心臟功能。另一方面, 主要表現在心臟的電位 相關性鈣離子通道是Cav1.2, 也有報導指出Cav1.2 離子通道可受γ1 調控, 結合 這些資訊, 我們想要去研究是否心臟中主要的γ 次級單元就是γ6, 同時研究γ6 在心臟生理功能上的角色。 在這個實驗裡面, 我們首先從在細胞株上表現各次級單元, 藉由紀錄電流變 化來看γ6 對Cav1.2 的調控。更進一步我們利用γ6 基因剔除鼠來研究γ6 在生理 上的功能, 這個部分我們觀察γ6 在野生種的表現程度, 接著我們紀錄心肌細胞 的L 型電流, 看γ6 的存在是否會影響電流密度大小。進一步我們利用主動脈結 紥手術施予野生種與γ6 基因剔除鼠壓力來觀察過量壓力對這些老鼠心臟功能的 影響。從實驗結果我們發現, 當缺少γ6 次級單元時L 型電流密度較大並且比較 容易造成左心室肥大。因此我們認為γ6 次級離子可能藉由調控Cav1.2 的鈣離子 電流而在生理功能上扮演保護的角色。 | zh_TW |
dc.description.abstract | Voltage-gated calcium channels are important mediators of several physiological
processes, such as neurotransmission, muscle contraction, intracellular signaling, hormone secretion, and development. There are two classes of voltage-gated calcium channels have been described: low-voltage-gated such as T-type calcium channel and high-voltage-gated including L-, N-, P-, Q-, and R-type calcium channels. Calcium entry through L-type calcium channels into cardiomyocytes can initiate event of excitation-contraction coupling process has been shown. And previous studies showed that L-type calcium channels are abundant and function with cardiac hypertrophy and heart failure. Therefore, an understanding of the structure and regulation of calcium channels is critical for the comprehension of these physiological phenomena. We have known that the L-type calcium channels are composed of four subunits – the pore forming α1 subunits and the auxiliary α2δ, β, and γ subunits. The α2 δ and β subunits modulate properties of the calcium current such as increasing current amplitude, changes of kinetics, and affecting channel expression at the plasma membrane have been shown. There are eight γ isoforms and some such as γ1, γ2, γ3, γ4 have been studied and shown their regulatory of calcium channel properties. The homology of γ6 to γ1 is higher than others and γ6 also showed robust expression in skeletal muscle and mild in other tissue including heart. In addition, previous study showed that γ6 subunit is a modulator of Cav3.1 calcium channel, but the precise physiological role of γ6 is still unclear. In this study, we have used the γ 6 knockout mice to investigate the influence of γ6 subunit especially in the heart function and L-type calcium channel. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:19:50Z (GMT). No. of bitstreams: 1 ntu-97-R95b41021-1.pdf: 1749672 bytes, checksum: e9f5258acb26117dbeab4d7531188a9c (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員審定書-----------------------------------------------------------------i
致謝--------------------------------------------------------------------------------ii Abstract in Chinese--------------------------------------------------------------iii Abstract in English---------------------------------------------------------------v I. Introduction----------------------------------------------------------------------1 II. Results---------------------------------------------------------------------------8 II-1 The γ6 RNA expression level of skeletal and cardiac muscle in wild type mice-------------------------------------------------------------8 II-2 γ6 subunit can modulate the L-current density in expression system---------------------------------------------------------------------9 II-3 generation of the γ6 knockout mice-----------------------------------10 II-4 Loss of γ6 transcripts in γ6 knockout mice---------------------------10 II-5 Loss of γ6 translation in γ6 knockout mice---------------------------11 II-6 Overall phenotype of γ6 knockout mice------------------------------11 II-7 The L-current density is larger in cardiomyocyte isolated from γ6 knockout mice-----------------------------------------------------------13 II-8 The α1C expression level in wild-type and γ6 knockout mice------------------------------------------------------------------------13 II-9 Suffering the pressure overload, γ6 knockout mice develop severe cardiac hypertrophy-----------------------------------------------------14 II-10 I.V. injection of AAV8-flag-γ6 can reduce the hypertrophic response induced by pressure overload in γ6 knockout mice-----------------------------------------------------------------------15 III. Discussion--------------------------------------------------------------------16 IV. Methodology ----------------------------------------------------------------18 IV-1 Cell culture--------------------------------------------------------------18 IV-2 Transfection-------------------------------------------------------------18 IV-3 RNA preparation-------------------------------------------------------19 IV-4 Protein preparation-----------------------------------------------------19 IV-5 RT-PCR-----------------------------------------------------------------20 IV-6 qRT-PCR----------------------------------------------------------------20 IV-7 Western blot analysis--------------------------------------------------20 IV-8 Isolation of cardiomyocytes------------------------------------------21 IV-9 Patch-clamp-------------------------------------------------------------22 IV-10 Echocardiography----------------------------------------------------22 IV-11 EKG--------------------------------------------------------------------23 IV-12 Transverse aortic banding-------------------------------------------23 IV-13 Administration of adeno-associated virus serotype 8 (AAV8)-24 V. Figures-------------------------------------------------------------------------25 Fig1 The structure of high voltage-gated calcium channels-------------25 Fig2 Predicted structure of γ subunit and its amino acid sequence-----26 Fig3 γ6 expression level of skeletal and cardiac muscle in wild type mice----------------------------------------------------------------------27 Fig4 Differential expression of γ6 in neonatal and adult tissues-----28 Fig5 The I-V curve of calcium currents in expression system----------29 Fig6 The γ6 knockout mice are generated by gene trapping technics--30 Fig7 Loss of γ6 transcripts in γ6 knockout mice--------------------------31 Fig8 Western blot analysis for γ6-------------------------------------------32 Fig9 The weight-age curve in wild type and knockout mice------------33 Fig10 Basal level of echocardiogram analysis in wild type and knockout mice--------------------------------------------------------34 Fig11 Basal level of blood pressure in wild type and γ6 knockout mice--------------------------------------------------------------------35 Fig12 Electrocardiogram (EKG) analysis of wild type and γ6 knockout mice--------------------------------------------------------------------36 Fig13 The calcium current recording of ventricular myocytes in wild type and γ6 knockout mice------------------------------------------37 Fig14 The channel property in activation and steady-state inactivation-----------------------------------------------------------38 Fig15 RNA and protein expression level of Cav1.2 (α1C) in wild type and γ6 knockout mice------------------------------------------------39 Fig16 Echocardiogram analysis of wild type and γ6 knockout mice with pressure overload-----------------------------------------------40 Fig17 Western blot analysis using ANTI-FLAG M2© antibody-------41 Fig18 Echocardiogram analysis of AAV8 injected mice----------------42 Fig19 The L-current density in expression which performed by C. C. Chen--------------------------------------------------------------------43 Fig20 Excitation-transcription coupling. Possible CaM, CaMKII and calcineurin signaling pathways in cardiac hypertrophy---------44 VI. References-------------------------------------------------------------------45 | |
dc.language.iso | en | |
dc.title | 鈣離子通道次級單位-γ6對L型鈣離子通道與心臟功能的影響 | zh_TW |
dc.title | Calcium Channel γ6 Subunit Modulates the Function of L-type Calcium Channels and Affects the Heart Function | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 陳建璋(Chien-Chang Chen) | |
dc.contributor.oralexamcommittee | 朱柏如(Po-Ju Chu),林恆(Heng Lin) | |
dc.subject.keyword | 電位相關性鈣離子通道,鈣離子通道次級單位γ6,L型鈣離子電流,心肌細胞,心臟肥大, | zh_TW |
dc.subject.keyword | voltage-gated calcium channel,γ6 subunit,L type calcium current,cardiomyocyte,cardiac hypertrophy, | en |
dc.relation.page | 51 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-24 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 動物學研究所 | zh_TW |
顯示於系所單位: | 動物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。