Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37127
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王松永(Song-Yung Wang)
dc.contributor.authorPei-Yu Kuoen
dc.contributor.author郭佩鈺zh_TW
dc.date.accessioned2021-06-13T15:19:41Z-
dc.date.available2008-07-26
dc.date.copyright2008-07-26
dc.date.issued2008
dc.date.submitted2008-07-22
dc.identifier.citation1.李貴琪、林佳詩和游輝仁(2004)利用發泡複合材料內之填充劑種類對電磁波吸收效果之研究。中國文化大學紡織工程學系。
2.胡德(1980)高分子物理與機械性質。渤海堂文化公司印行。1-78頁。
3.許民、王清文、宋永明和彭廣亮(2006)混煉工藝參數對木/塑複合材料性能的影響。ChinaWood Industry。20(3):7-9。
4.洪崇彬(2002)木質廢棄物製造之碳化材的基本性質與利用。國立台灣大學博士論文。135頁。
5.崔易华、Noruziaan Bahman、Lee Stephen、Chang Moe和陶杰(2005)再生型木塑複合材料的研究。南京航空航天大學學報。37(5):587-592。
6.陳建源(2000)塑木複材之流變性質與界面改質之研究。東海大學化學工程學系碩士論文。92頁。
7.黃奕寶,吳耀明和鄭國彬(2003)聚丙烯/無機複合材料靜電放電性質之研究。第二屆台灣靜電放電防護技術研討會。
8.黃國雄、李銘鐘和彭武財(1994)塑膠-木材複合粒片板之性質。台灣林業科學9(4):407-412 。
9.黃國雄和熊如珍(2000)廢棄木質粒片製造塑膠木材複合板之耐久性。台灣林業科學15(2):201-208。
10.河上榮忠(2005)「木材、プラスチツク再生複合材」に關ちるJIS原按作成の背景と現狀並びに付社取組と。木材工業60(8):382-383。
11.長澤長八郎(1998)炭素材料による機能性木質材料の開發-電磁波屏蔽性能の向上。木質複合材料研究成果報告書。木質複合材料技術研究組合編。第218-222頁。
12.高橋一聰(2005)建築解體木材と廢家店品プラスチツクを原料とした木質ボード製造技術。木材工業60(4):160-163。
13.確冰宏明(2005)木質プラスチツク複合體の開發と內裝建材ヘの應用,木材工業。60(8):383。
14.JIS A 5741(2006)木材塑膠再生複合材。日本規格協會。
15.Ticky, R. J. (2004) 美國における木質プラスチツク的工業規格,木材工業。59(8):348-349.
16.Zodl, H. (2004) デンプン添加新規高木質含量プラスチツク複合體製造木材工業,59(8):347-348.
17.Ashida, M., T. Noguchi, S. Mashimo (1985) Effect of matrixs type on the dynamic properties for short fiber-elastomer composite. Journal of Applied Polymer
Science. 30(3):1011-1021.
18.ASTM D638 (2004) Standard test method for tensile properties of plastics. ASTM International.
19.ASTM D1037 (2006) Standard test methods for evaluating properties of wood-base fiber and particle panel materials. ASTM International.
20.ASTM D1238 (2004) Standard tset method for melt flow rates of thermoplastics by extrusion plastometer. ASTM International.
21.ASTM D4761 (2005) Standard test methods for mechanical properties of lumber and wood-base structural material. ASTM International.
22.Barnes, H. A., J. F. Hutton and K. Walters (1989) An introduction to rheology. Elsevier Science. P.210.
23.Chandra, P. K. and P. J. A., Sobral (2000) Calculatio of viscoelastic properties of edible films: application of three models. Ciênc. Tecnol. Aliment., 20 (2):250-256.
24.Chastagner, M. W.(2005)Slit die rheology of LDPE and ABS based wood plasticcomposites. Master thesis, Washington State University. P.96.
25.Clemons, C. M. (2002)Wood-plastic composites in the United States - The interfacing of two industries. Forest Products Journal. 52 (6): 10-18.
26.Clemons, C. M., D. F. Caulfield and A. J. Giacomin(1999) Dynamic fracture toughness of cellulose-fiber-reinforced polypropylene: Preliminary investigation of microstructural effects. Journal of Elastomers and Plastics. 31 (4): 367-378.
27.Couturier, M. F., K. George and M. H. Schneider (1996) Thermophysical properties of wood-polymer composites.Wood Science and Technology. 30 (3): 179-196.
28.David, M. (2000) Shielding : quantifying the shielding requirements for protable electronic design and providing new solutions by using a combination of materials
and design. Materials and Design 21:45-50.
29.English, B., C.M. Clemons, N. Stark and J.P. Schnieder (1996) Waste-wood derived fillers for plastics. Gen. Tech. Rept. FPL-GTR-91. USDA Forest Serv., Forest Prod. Lab., Madison, WI. pp. 282-291.
30.Falk R. H., D. J. Vos, S. M. Cramer and B. W. English(2001)Performance of fasteners in wood flour-thermoplastic composite panels. Forest Products Journal. 51 (1):55-61
31.Falk, R. H., C. Felton and T. Lundin(2000)Effect of weathering on color loss of natural fiber thermoplastic composites. Natural Polymers and Composites, 382-385.
32.Felix, J. M. and P. Gatenholm (1991) The nature of adhesion in composites of modified cellulose fibers and polypropylene. Journal of Applied Polymer Science, 42 : 609.
33.French, D. N. (1991) Creep and Creep Failures. National Board Bulletin. P.4.
34.Fu, S.Y., X. Hu and C. Y. Yue (1999) The flexural modulus of misaligned short-fiber-reinforced polymers. Composites Science and Technology. 59 (10):1533-1542
35.Gassan, J. and A. K. Bledzki (1997) The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Composites part a-Applied Science and Manufacturing. 28(12):1001-1005.
36.Gatenholm, P., J. Kubat and A. Mathiasson (1992)Biodegradable natural composites 1. processing and properties. Journal of applied polymer science. 45 (9): 1667-1677.
37.George, J., M. S. Sreekala and S. Thomas (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polymer Engineering and Science. 41(9):1471-1485.
38.Guo, C., Y. Song, Q. Wang and C. Shen (2006) Dynamic-mechanical analysis and SEM morphology of wood flour/polypropylene composites. Journal of Forestry
Research. 17(4):315-318.
39.Gurland, J. (1966) An estimate of contact and conductivity of dispersions in opaque samples. Transactions of the Metallurgical Society of Aime. Vol. 236.
40.Haiar, K. J. (2000) Performance and design of prototype wood-plastic composite sections. Master thesis, Washington State University. P.128.
41.Harper, D. P. and M. P. Wolcott (2006) Chemical imaging of wood-polypropylene composites. Applied Spectroscopy. 60 (8): 898-905.
42.Huang, G. S.(1997)Manufacturing of plastic/wood composite boards with waste polyethylene and wood particles. Taiwan J For Sci. 12 (4) : 443-450.
43.Huda, M. S., L. T. Drzal, A. K. Mohanty and M. Misra, (2006)Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: A comparative study. Composites Science and Technology. 66(11-12): 1813-1824.
44.Joly, C, R. Gauthier and M. Escoubes (1996) Partial masking of cellulosic fiber hydrophilicity for composite applications.Water sorption by chemically modified
fibers. Journal of Applied Polymer Science. 61(1): 57-69.
45.Joseph, K., S Varghese, G. Kalaprasad, S. Thomas, L. Prasannakumari, P. Koshy and C. Pavithran (1996) Influence of interfacial adhesion on the mechanical properties
and fracture behaviour of short sisal fibre reinforced polymer composites. European Polymer Journal. 32(10): 1243-1250.
46.Kazayawoko, M., J. J. Balatinecz and R. T. Woodhams (1997) Diffuse reflectance Fourier Transform Infrared spectra of wood fibers treated with maleated polypropylenes. Journal of Applied Polymer Science. 66(1): 1163-1173.
47.Kazayawoko, M, J. J. Balatinecz and L. M. Matuana (1999) Surface modification and adhesion mechanisms in woodfiber-polypropylene composites. Journal of Material Science. 34 (24): 6189-6199.
48.Kortschot, M. T. and R. T.Woodhams (1988) Computer simulation of the electrical conductivity of polymer composite containing metallic fillers. Polymer Composites.
9(1): 60-71.
49.Li, T.Q. and M. P. Wolcott (2005) Rheology of wood plastics melt. Part 1 - capillary rheometry of LDPE filled with maple. Polymer Engineering and Science. 45 (4) :549-559.
50.Mark, J. E. (1999) Polymer data handbook. Oxford university press. pp. 782-784.
51.McGrum, N. G., B. E. Read, G. Williams (1967) An elastic and dielectric effects in polymeric solids. London Wiley.
52.Menard, K. P. (1999) Dynamic Mechanical Analysis: A PracticalIntroduction. CRC Press. P. 208.
53.Miller, A. (1947) The cold alkaline purification of wood cellulose. 2. the influence of surface properties on resistant pentosans. Technical Association Papers. 30: 317-320.
54.Nabi, Z. U and S. Hashemi(1999) Influence of short glass fibers and weld lines on the mechanical properties of injection-moulded acrylonitrile-styrene-acrylate copolymer. Journal of Material Science. 33 (12): 2985-3000.
55.Nachtigall, S. M. B., G. S. Cerveira and S. M. L. Rosa(2007)New polymeric-coupling agent for polypropylene/wood-flour composites. Polymer Testing. 26:619-628.
56.Najafi, S. K., M. Tajavidi and E. Hamidina (2007) Effect of temperature, plastic type and virginity on the water uptake of sawdust/plastic composites. Holz RohWerkst. 65: 377-382.
57.Nele, M., A. Latado and J. C. Pinto (2006) Correlating polymer parameters to the entire molecular weight distribution: Application to the melt index. Macromolecular
Materials and Engineering. 291(3):272-278.
58.Nuñez, A. J., J. M. Kenny, M. M. Reboredo, M. I. Aranguren and N. E. Marcovich (2002) Thermal and dynamic mechanical characterization of polypropylene-woodflour composites. Polymer Engineering and Science. 42 (4): 733-742.
59.Nunez A. J., N. E. Marcovich and M. I. Aranguren (2004)Analysis of the creep behavior of polypropylene woodflour composites. Polymer Engineering and Science. 44 (8) : 1594-1603.
60.Oksman, K. and H. Lindberg (1998)The influence of a SBS compatibilizer in polyethylene-wood flour composites. Holzforschung. 52(6): 661-666.
61.Optimate Ltd and Merl Ltd(2003)Wood plastic composite study-technologies and UK market opportunities, Research report. The waste and researches action programme, UK.
62.Rangaraj, S.(1999)Durability assessment and modeling of wood-thermoplastic composites. Mater thesis, Washington State University. P.101
63.Selke, S. E. and I. Wichman (2004) Wood fiber/polyolefin composites. Composites : Part A 35:321–326.
64.Simoneit, B. T., P.Medeiros,and B. Didyk (2003) Combustion products of plastics as indicators for refuse burning in the atmosphere. Environ. Sci. Technol. 37 : 652–656.
65.Slaughter A. E.(2004)Design and Fatigue of a structural wood-plastic composites. Master thesis, Washington State University. P.161.
66.Son, S. J., Y. M. Lee and S. S. Im (2000) Transcrystalline morphology and mechanical properties in polypropylene composites containing cellulose treated with sodium hydroxide and cellulose. Journal of Material Science. 35 (22): 5767-5778.
67.Sreekala, M. S., M. G. Kumaran and S. Thomas (1997) Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. Journal of
Applied Polymer Science. 66(5):821-835.
68.Stark, N. M.(1999)Wood fiber derived from scrap pallets used in polypropylene composites. Forest Product Jounal. 49(6):39-46.
69.Stark, N. M., L. M. Matuana and C. M. Clemons (2004) Effect of processing method on surface and weathering characteristics of wood–flour/LDPE composites. Journal
of applied polymer science, 93 (3) : 1021–1030.
70.Takatani, M., H. Ito, S. Ohsugi, T. Kitayama, M. Saegusa, S. Kawai and T. Okamoto (2000) Effect of lignocellulosic materials on the properties of thermoplastic polymer/wood composites. Holzforschung. 54(2): 197–200.
71.Verhey, S., P. Laks and D. Richter (2001) Laboratory decay resistance of woodfiber/thermoplastic composites. Forest Products Journal. 51(9):44-49.
72.Wolcott, M. P., T. G. Rials and J. M. Nassar (2001) Interfacial contributions in lignocellulosic fiber-reinforced polyurethane composites. Journal of Applied
Polymer Science. 80 (4): 546-555.
73.Yang, H. S. and H. J. Kim (2004) Rice-husk flour filled polypropylene composites; mechanical and morphological study, Composite Structure. 63 (3-4): 305-312.
74.Yano, H., P. J. Collins and Y. Yazaki (2001) Plastic-like moulded products made from renewable forest resources. Journal of Materials Science. 36 (8): 1939 – 1942.
75.Zawlocki, M. M. (2005) Characterization of wood-plastic composites by dissipated energy. Master thesis, Washington State University. P.142
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37127-
dc.description.abstract木材塑膠複合材料(Wood Plastic Composites,WPC)因其具有完全回收、良好強度與低吸水性等優點,在現今高油價的趨勢下,而成為備受矚目的環保材料,以本試驗所做出的WPC為例,固碳量在塑膠/木粉=1:1為68%,對於減碳有正面的效果。雖然WPC兼具塑膠與木材的優點,但複合材料也容易導致多元的變數,故本試驗探討不同塑膠基材、木粉種類與大小、塑膠基材/木粉比例、添加劑與製程等條件對WPC性質的影響,包含抗拉強度、抗彎強度、動態性質、吸濕澎潤性、電磁波屏蔽效應與微觀結構。
試驗結果顯示:塑膠基材與木粉比例以略近1:1的機械性質較好,其中塑膠基材因其流動性而影響試片的機械性質甚鉅,木粉選擇以混合樹種和小於180 μm徑級為佳,若木粉能先以NaOH處理,則對WPC性質有極顯著提升;比較不同添加劑含量,MAPP以3 %、4.5 %有良好的強度表現,製程上而言,以射出成形的試片較押出成形與熱壓成形優良;此外,50%含木炭率之4.3 mm厚WPC具有約22dB的平均電磁波遮蔽效果,1.72 cm厚WPC具有約54dB電磁波的遮蔽效果,也就是等級2與3的遮蔽量。
zh_TW
dc.description.abstractWood Plastic Composites (WPC) is one of highly attracting materials because of its recycling resource, great mechanical strength and low water absorption. Considering the trend of high fuel price, WPC, one of green materials, becomes more and more important. For instance, WPC of 47% wood can fix 68% carbon so WPC has positive effect of carbon conservation. The character of WPC not only combines the advantages from wood and plastic but also brings complex and various factors. So the purpose of the study was to investigate the effects of plastic based, wood based, plastic/wood ratio, additives and manufacturing process on the tension strength, modulus of rupture, dynamic mechanical property, water absorption, E.S.E (Electromagnetic Shielding Efficiency) and microstructure of WPC.
The results showed that in the based material part, with the ratio of plastic/wood about 1, WPC had the greater mechanical properties. The rheology of plastic based
played an important rule. The wood flour having smaller size than 180μm and mixed species had better properties. If the wood flour was treated 8%NaOH before manufacturing process, WPC had obviously improved properties.
In the manufacturing process part, WPC of injection process had superior properties to extrusion and hot pressing process. Besides, in the additives part, comparing different weight concentration of MAPP, WPC of 3% and 4.5 % had greater properties. Adding 50% the charcoal of 1000℃ Taiwan Paulownia could give WPC a great E.S.E.. When the thickness was 4.3 mm WPC had about 22dB and when the thickness was 1.72 cm, WPC had about 58 dB, respectively was 2 and 3 shielding level.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:19:41Z (GMT). No. of bitstreams: 1
ntu-97-R95625006-1.pdf: 4674647 bytes, checksum: b51dafa5d67a116a807ad7a7f1d08cf4 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents摘要.................................................................................................................................Ⅰ
Abstract...........................................................................................................................Ⅱ
一、前言..........................................................................................................................1
二、文獻回顧..................................................................................................................4
2.1 材料的影響.............................................................................................................. 4
2.1.1 塑膠基材............................................................................................................... 4
2.1.2 木材....................................................................................................................... 5
2.2 材料比例.................................................................................................................. 6
2.3 製程的影響.............................................................................................................. 7
2.4 改質.......................................................................................................................... 8
2.4.1 耦合劑................................................................................................................... 9
2.4.2 鹼膨潤.................................................................................................................. 11
2.5 電磁波屏蔽效應(Electromagnetic Shielding Efficiency, E.S.E.).................... 11
2.6 DMA動態分析與短期潛變模式............................................................................ 15
三、試驗材料與方法....................................................................................................22
3.1 試驗材料................................................................................................................ 22
3.1.1 塑料..................................................................................................................... 22
3.1.2 木料..................................................................................................................... 23
3.1.3 添加劑................................................................................................................. 23
3.2 製程方法................................................................................................................ 23
3.2.1 預備處理............................................................................................................. 23
3.2.2 混煉..................................................................................................................... 25
3.2.3 成形..................................................................................................................... 25
3.3 性質評估................................................................................................................ 26
3.3.1 抗拉強度(ASTM D638)................................................................................ 26
3.3.2 吸水厚度膨潤率(ASTM D1037).................................................................. 27
3.3.3 抗彎強度(ASTM D4761).............................................................................. 28
3.3.4 動態性質試驗..................................................................................................... 28
3.3.5 熔融指數量測(Melt Flow index)(ASTM D 1238) ................................ 28
3.3.6 掃瞄式電子顯微鏡觀察(Scanning Electric Microscopy, SEM) ................ 29
3.3.7 電磁波屏蔽效應分析......................................................................................... 29
3.3.8 紅外線光譜分析(Fourier-Transform Infrared Spectrometer, FTIR) .......... 30
3.3.9 元素分析(Elemental Analyzer, EA).............................................................. 30
3.4 統計分析................................................................................................................ 30
四、結果與討論............................................................................................................31
4.1 材料的影響............................................................................................................ 31
4.1.1 塑膠基材之性質研究......................................................................................... 31
4.1.2 木粉種類與粒徑大小......................................................................................... 35
4.1.3 不同塑膠基材添加木粉的變化......................................................................... 38
4.1.4 木粉與塑膠比例..................................................................................................51
4.1.5 耦合劑添加量對WPC性質之影響.................................................................... 58
4.1.6 潤滑劑效果......................................................................................................... 65
4.1.7 添加木炭粉的WPC性質.................................................................................... 68
4.2 製程的影響............................................................................................................ 70
4.2.1 混煉條件............................................................................................................. 70
4.2.2 成形製程-熱壓成形、押出成形與射出成形的WPC之性質比較................... 71
4.2.3 成形條件............................................................................................................. 77
4.2.3 成形條件............................................................................................................. 77
4.3 添加木炭粉對電磁波屏蔽效應的影響................................................................ 81
五、結論........................................................................................................................84
dc.language.isozh-TW
dc.subject電磁波屏蔽效應zh_TW
dc.subjectWPCzh_TW
dc.subject射出成形zh_TW
dc.subject押出成形zh_TW
dc.subject熱壓成形zh_TW
dc.subjectelectromagnetic shielding efficiencyen
dc.subjectWPCen
dc.subjectinjectionen
dc.subjectextrusionen
dc.subjecthot pressing processen
dc.title木材塑膠再生成形複合材的基本性質探討zh_TW
dc.titleBasic Properties of Wood Plastic Composites Made from
Recycled Materials
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳載永,張上鎮,林正榮,蔡明哲
dc.subject.keywordWPC,射出成形,押出成形,熱壓成形,電磁波屏蔽效應,zh_TW
dc.subject.keywordWPC,injection,extrusion,hot pressing process,electromagnetic shielding efficiency,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2008-07-24
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
4.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved