請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37112完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾孫霖 | |
| dc.contributor.author | Chien-Hui Hung | en |
| dc.contributor.author | 洪千惠 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:19:25Z | - |
| dc.date.available | 2008-07-24 | |
| dc.date.copyright | 2008-07-24 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-24 | |
| dc.identifier.citation | Adams, D. D., Burns, L.E., Pessel, G.H., Little, T.A., Newberry, R.J. & Flynn, L.R. (1985) Preliminary geologic map of the central Talkeetna Mountains, Alaska: Alaska Division of Geological and Geophysical Surveys, Public Data File 85-20.
Aleinikoff, J. N., Farmer, G. L., Rye, R. O., & Nokleberg, W. J. (2000). Isotopic evidence for the sources of Cretaceous and Tertiary granitic rocks, east-central Alaska: implications for the tectonic evolution of the Yukon-Tanana Terrane. Canadian Journal of Earth Sciences, 37(6), 945-956. Anderson, J. L. (1983). Proterozoic anorogenic granite plutonism of north-America. Geological Society of America Memoirs, 161, 133-154. BlichertToft, J. & Albarede, F. (1997). The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2), 243-258. Bradley, D., Kusky, T., Haeussler, P., Goldfarb, R., Miller, M., Dumoulin, J., Nelson, S. W., Karl, S. (2003). Geologic signature of early Tertiary ridge subduction in Alaska. Geological Society of America Special Paper 371, 19-49. Chiu, H.-Y., Chung, S.-L., Wu, F.-Y., Liu, D., Liang, Y.-H., Lin, I.-J., Yoshiyuki Iizuka, Xie, L.-W, Wang, Y., Chu , M.-F (2008). Zircon U-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, in review. Cole, R. B., Ridgway, K. D., Layer, P. W., & Drake, J. (1999). Kinematics of basin development during the transition from terrane accretion to strike-slip tectonics, Late Cretaceous-early Tertiary Cantwell Formation, south central Alaska. Tectonics, 18(6), 1224-1244. Cole, R. B. & Layer, P. W. (2002). Stratigraphy, age, and geochemistry of Tertiary volcanic rocks ans associated synorogenic deposits, Mount McKinley quadrangle, Alaska. U.S. Geological Survey Professional Paper 1662, 19-43. Cole, R. B., Chung, S. L., Ridgway, K. D., & Shinjo, R. (2006a). Nd-Sr-Pb isotope composition of post-collisional volcanic rocks in front of an accreted terrane suture zone, Cantwell Formation, central Alaska Range. Geological Society of America Abstracts With Programs, 38(5), 20. Cole, R. B., Nelson, S. W., Layer, P. W., & Oswald, P. J. (2006b). Eocene volcanism above a depleted mantle slab window in southern Alaska. Geological Society of America Bulletin, 118(1-2), 140-158. Cole, R. B., Layer, P. W., Hooks, B., Cyr, A., & Turner, J. (2007a). Magmatism and deformation in a terrane suture zone south of the Denali fault, northern Talkeetna Mountains, Alaska. The Geological Society of America Special Paper 431, 477-507. Cole, R. B. & Stewart, B. W. (2007b). Post-Collisional magmatism across an accreted terrane assemblage in South-Central Alaska: connections between mantle sources, deformation, and plate margin dynamics. AGU, 88(52), Fall Meet. Suppl., Abstract, T31B-0480. Creaser, R. A., Price, R. C., & Wormald, R. J. (1991). A-type granites revisited- assessment of a residual-source model. Geology, 19(2), 163-166. Csejtey, B., Jr., Nelson, W.H., Jones, D.L., Silberling, N.J., Dean, R.M., Morris, M.S., Lanphere, M.A., Smith, J.G. & Silberman, M.L. (1978) Reconnaissance geologic map and geochronology, Talkeetna Mountains quadrangle, northern part of Anchorage quadrangle, and southwest corner of Healy quadrangle, Alaska: U.S. Geological Survey open-file report 78-558-A. Csejtey, B., Mullen, M. W., Cox, D. P., & Stricker, G. D. (1992). Geology and geochronology of the Healy quadrangle, south-central Alaska. Geological Survey Map I-1961, scale 1:250000. Decker, J. E. & Gilbert, W. G. (1978). The Mount Gallen volcanics; A new middle Tertiary volcanic formation in the central Alaska Range. Alaska Division of Geological and Geophysical Surveys Geologic Report 59, 11. Depaolo, D. J. & Wasserburg, G. J. (1976). Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3(5), 249-252. Eby, G. N. (1990). The A-type granitoids- a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1-2), 115-134. Eby, G. N. (1992). Chemical subdivision of the A-type granioids- petrogenetic and tectonic implications. Geology, 20(7), 641-644. Eggins, S. M., Woodhead, J. D., Kinsley, L. P. J., Mortimer, G. E., Sylvester, P., McCulloch, M. T., Hergt, J. M., Handler, M. R. (1997). A simple method for the precise determination of >=40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chemical Geology, 134(4), 311-326. Engebretson, D. C., Cox, A., & Gordon, R. G. (1985). Relative motions between oceanic and continental plates in the Pacific basin. Geological Society of America Special Paper 206, 59. Govindaraju, K. (1994). 1994 complication of working values and sample descrirtion for 383 geostandards. Geostandards Newsletter, 18, 158. Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., van Achterbergh, E., O'Reilly, S. Y., Shee, S. R. (2000). The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica Et Cosmochimica Acta, 64(1), 133-147. Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O'Reilly, S. Y., Xu, X. S., Zhou, X. M. (2002). Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4), 237-269. Hillhouse, J. W. (1977). Paleomagnetism of Triassic-Nikolai-greenstone, McCarthy-quadrangle, Alaska. Canadian Journal of Earth Sciences, 14(11), 2578-2592. Jahn, B. M. (2004). The Central Asian Orogenic belt and growth of the continental crust in the Phanerozoic. In Malpas, J., Fletcher, C.J.N. & Aitchison, J.C. (Eds.), Aspects of the Tectonic Evolution of China (Vol. 226, pp. 73-100): Geological Society, London, Special Publications. Jones, D. L., Silberling, N. J., Gilbert, W., & Coney, P. (1982). Character, distribution, and tectonic signature of accretionary terranes in the central Alaska Range. Journal of Geophysical Research, 87(B5), 3709-3717. Jones, D. L., Silberling, N. J., & Hillhouse, J. (1977). Wrangellia- displaced terrane in northwestern North America. Canadian Journal of Earth Sciences, 14(11), 2565-2577. Keto, L. S. & Jacobsen, S. B. (1987). Nd and Sr isotopic variations of early Paleozoic oceans. Earth Planet. Sci. Lett. 84, 27-41. Kinny, P. D., & Maas, R. (2003). Lu-Hf and Sm-Nd isotope systems in zircon. In J. M. Hanchar & P. W. O. Hoskin (Eds.), Reviews in Mineralogy & Geochemistry-Zircon (Vol. 53 , pp. 327-341): Mineralogical Society of America & Geochemical Society. Kosler, J. & Sylvester, P. J. (2003). Present trends and the future of zircon in geochronology: Laser ablation ICPMS. In J. M. Hanchar & P. W. O. Hoskin (Eds.), Reviews in Mineralogy & Geochemistry-Zircon (Vol. 53 , pp. 243-275): Mineralogical Society of America & Geochemical Society. Kusky, T. M., Bradley, D. C., Donely, D. T., Rowley, D., & Haeussler, P. J. (2003). Controls on intrusion of near-trench magmas of the Sanak-Baranof Belt, Alaska, during Paleogene ridge subduction, and consequences for forearc evolution. Geological Society of America Special Paper 371, 269-292. Lanphere, M. A. & Reed, B. L. (1985). The McKinley sequence of granitic rocks: a key element in the accretionary history of southern Alaska. Journal of Geophysical Research, 90(B13), 11413-11430. Lugmair, G. W. & Marti, K. (1978). Lunar initial 143Nd/144Nd: Differential evolution of lunar crust and mantle. Earth and Planetary Science Letters, 39(3), 349-357. Moll-Stalcup, E. (1994). Latest Cretaceous and Cenozoic magmatism in mainland Alaska. The Geology of Alaska, G-1, 589-619. Nakamura, K., Jacob, K. H. & Davies, J. N. (1977). Volcanos as possible indicators of tectonic stress orientation- Aleutians and Alaska. Pure and Applied Geophysics, 115(1-2), 87-112. Nichols, k. m. & Silberling, N. J. (1979). Early Triassic (Smithian) ammonites of paleoequatorial affinity from the Chulitna terrane, south-central Alask. US Geological Survey Professional Paper, 1121-B, 5. Nir-El, Y. & Lavi, N. (1998). Measurement of the half-life of Lu-176. Applied Radiation and Isotopes, 49(12), 1653-1655. Nokleberg, W. J., Patchett, P. J. & Wilson, F. H. (1994). Geology of south-central Alaska. The Geology of Alaska, G-1, 311-366. Patchett, P. J. & Tastumoto, M. (1981). Lu/Hf in Chondrites and definition of a chondritic hafnium growth curve. Lunar Planet. Sci. XII, Part 2, 822-824. Patiño Douce, A. E. (1997). Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25, 743-746. Pavlis, T. L. & Sisson, V. B. (1995). Structual history of the Chugach metamorphic complex in the Tana River region, eastern Alaska. Geological Society of America Bulletin, 107(11), 1333-1355. Pearce, J. A., Harris, N. B. W. & Tindle, A. G. (1984). Trace-element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956-983. Plafker, G. & Berg, H. C. (1994). Overview of the geology and tectonic evolution of Alaska. The Geology of Alaska, G-1, 989-1021. Peppard, D. F., Mason, G. W., Lewey, S. (1969). A tetrad effect in the liquid-liquid extraction ordering of lanthanide (III). J. Inorg. Nucl. Chem. 31, 339-343 Reed, B. L. & Lanphere, M. A. (1973). Alaska-Aleutian range batholith: geochronology, chemistry, and relation to circum-Pacific plutonism. Geological Society of America Bulletin, 84(8), 2583-2609. Reed, B. L. & Lanphere, M. A. (1974). Offset plutons and history of movement along the McKinley segment of the Denali fault system, Alaska. Geological Society of America Bulletin, 85(12), 1883-1892. Reiners, P. W., Nelson, B. K., & Nelson, S. W. (1996). Evidence for multiple mechanisms of crustal contamination of magma from compositionally zoned plutons and associated ultramafic intrusions of the Alaska range. Journal of Petrology, 37(2), 261-292. Ridgway, K. D., Trop, J. M., Nokleberg, W. J., Davidson, C. M., & Eastham, K. R. (2002). Mesozoic and Cenozoic tectonics of the eastern and central Alaska Range: Progressive basin development and deformation in a suture zone. Geological Society of America Bulletin, 114(12), 1480-1504. Samson, S. D., McClelland, W. C., Patchett, P. J., Gehrels, G. E., & Anderson, R. G. (1989). Evidence from neodymium isotopes for mantle contributions to Phanerozoic crustal genesis in the Canadian Cordillera. Nature, 337(6209), 705-709. Scherer, E., Munker, C., & Mezger, K. (2001). Calibration of the lutetium-hafnium clock. Science, 293(5530), 683-687. Sisson, V. B. & Pavlis, T. L. (1993). Geologic consequence of plate reorganization: an example from the Eocene southern Alaska fore arc. Geology, 21(10), 913-913. Smart, K. J., Pavlis, T. L., Sisson, V. B., Roeske, S. M., & Snee, L. W. (1996). The Border Ranges fault system in Glacier Bay National Park, Alaska: Evidence for major early Cenozoic dextral strike-slip motion. Canadian Journal of Earth Sciences, 33(9), 1268-1282. Steiger, R. H. & Jager, E. (1977). Subcommission on geochronology : convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Letters, 36, 359-362. Sun, S. S. & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. Geological Society Special Publication, 42, 313-345. Taylor, S. R. & McLennan, S. M. (1985). The continental crust: its composition and evolution. Oxford, England, Blackwell, 312. von Drach, V., Marsh, B. D., & Wasserburg, G. J. (1986). Nd and Sr isotopes in the Aleutians; Multicomponent parenthood of island-arc magmas. Contrbutions to Mineralogy and Petrology, 92, 13-34. Wallace, W. K. & Engebretson, D. C. (1984). Relationships between plate motions and Late Cretaceous to Paleogene magmatism in southwestern Alaska. Tectonics, 3(2), 295-315. Wasserburg, G. J., Jacobsen, S. B., Depaolo, D. J., McCulloch, M. T., & Wen, T. (1981). Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica Et Cosmochimica Acta, 45(12), 2311-2323. Wilson, F. H., Dover, J. H., Bradley, D. C., Weber, F. R., Bundtzen, T. K., & Haeussler, P. J. (1998). Geological map of central (interior) Alaska. U.s. Geological Survey Open-File Report 98-133, 63. Wu, F. Y., Yang, Y. H., Xie, L. W., Yang, J. H., & Xu, P. (2006). Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2), 105-126. Zhao, Z., Xiong, X., Han, X., Wang, Y., Wang, Q., Bao, Z. & Jahn, B. M. (2002). Controls on the REE tetrad effect in granites: evidence from the Qianlishan and Baerzhe granites, China. Geochemical Journal, 36, 527-543. 宋彪, 張玉海, 萬渝生, & 簡平. (2002). 鋯石SHRMP樣品靶製作、年齡測定及有關現象討論. 地質評論, 48(26-30) 李寄嵎, 蔡榮浩, 何孝桓, 楊燦堯, 鍾孫霖, & 陳正宏. (1997). 應用X光螢光分析儀從事岩石樣本之定量分析(I)主要元素. 中國地質學會八十六年年會暨學術研討會論文摘要, 418-420. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37112 | - |
| dc.description.abstract | Plutonic rocks in the Central Alaska Range were emplaced during important
tectonic events including the end of Late Cretaceous-Paleocene arc magmatism, the terminal phase of terrane accretion, the Kula ridge subduction, regional strike-slip faulting, oroclinal rotation of western Alaska, and Eocene resumption of arc magmatism along the proto-Aleutian arc system. Here we report the first set of LA-ICPMS and SHRIMP zircon U-Pb ages for granitoids from (1) the McKinley Sequence, (2) the Composite Plutons and (3) the Foraker Pluton, central Alaska Range. Two peraluminous granites from the McKinley Sequence yielded 206Pb/238U ages of 62±1 and 60±1 Ma; an A-type granite from the same area gave age of 64±1 Ma. Two granodiorites from the Composite Plutons and a granite from the Foraker Pluton gave ages of 69±1, 67±1 and 37±1 Ma, respectively. The age results indicate that the Composite Plutons and the McKinley Sequence granites are older than previously reported and that the McKinley granites can be divided into two magma suites that consist of peraluminous and A-type compositions occurring at ca. 62-60 and 64 Ma, respectively. Nd and Sr isotope data suggest a temporal change in the magma’s isotopic compositions, with the Foraker granites showing higher and more heterogeneous εNd(T) values that range from about +6 to -2 and the Composite and McKinley Sequence granitoids showing lower and less heterogeneous εNd(T) values from +1 to -3. Besides, zircon Hf isotopic data of the dated samples show that a granite from the Foraker plutons has the highest zircon εHf(T) values from +15 to +10, in contrast to the Composite plutons that show apparently lower zircon εHf(T) values from +4 to -3. Peralumous and A-type granites from the McKinley Sequence have zircon εHf(T) values from +2 to -5 and +8 to +1, respectively. The Composite and McKinley Sequence plutonic rocks are interpreted as products of the ending phase of Late Cretaceous-Paleocene arc magmatism. The peraluminous granites from the McKinley sequence may have been sourced from the remnant mantle wedge, previously responsible for generating the Composite plutons and earlier arc magmas. Besides, generation of the A-type granites can be attributed to the v oroclinal rotation of western Alaska and ridge subduction that started around 64 Ma, a mechanism that may also have resulted in broadly coeval volcanism in the nearby Cantwell basin and northern Talkeetna Mountains. The Foraker pluton are interpreted as the product of renewed magmatism along the proto-Aleutian arc, in response to north or northwestward subduction of the Pacific plate during 45-30 Ma. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:19:25Z (GMT). No. of bitstreams: 1 ntu-97-R95224108-1.pdf: 6861041 bytes, checksum: f5801985ec1127186d6537c155197490 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 致謝....... i
中文摘要 ii 英文摘要 iv 目錄....... vi 圖目....... viii 表目....... ix 一、緒論 1 1.1 區域地質背景 1 1.1.1 Wrangellia composite terrane 1 1.1.2 Southern margin composite terrane 2 1.1.3 Kahiltna assemblage 3 1.1.4 Composite岩體、McKinley Sequence與Foraker岩體簡介 4 1.1.4.1 Composite岩體 4 1.1.4.2 McKinley Sequence 4 1.1.4.3 Foraker岩體 4 1.2 晚白堊紀至新生代於南阿拉斯加的岩漿活動 5 1.2.1 Late Cretaceous and early Tertiary magmatism 6 1.2.2 Middle Tertiary magmatism 6 1.2.3 Late Cenozoic volcanism 6 1.3 研究動機與目的 7 1.3.1 研究動機 7 1.3.2 研究目的 8 二、分析方法 9 2.1 岩樣採集位置 9 2.2 岩石薄片觀察 11 2.3 主量元素分析 11 2.3.1 主量元素分析步驟 11 2.3.2 燒失量測量 12 2.4 微量元素分析 12 2.4.1 微量元素測量之樣本處理 12 2.4.2 以ICP-MS測量USGS標準樣結果 13 2.5 鍶-釹同位素組成分析 16 2.5.1 標本前置處理 16 2.5.2鍶-釹同位素化學分離流程 16 2.5.2.1 第一分離柱 17 2.5.2.2 鍶純化分離柱 18 2.5.2.3 第二分離柱 18 2.5.3 以MC-ICP-MS測量標準樣結果 20 2.6 鋯石鈾-鉛定年分析 22 2.6.1 LA-ICP-QMS樣品靶(target)的製備 22 2.6.1.1鋯石的黏貼 22 2.6.1.2環氧樹脂的配置與灌注 22 2.6.1.3打磨與拋光 23 2.6.1.4樣品靶的顯微照相 23 2.6.2 SHRIMP樣品靶(target)的製備 24 2.6.3 鈾-鉛定年分析 24 2.7 鋯石鉿同位素分析 25 三、南阿拉斯加McKinley Sequence及相鄰岩體分析結果 28 3.1 定年資料 28 3.1.1 McKinley Sequence、Composite岩體與Foraker岩體 28 3.1.2 Reindeer Hills與Matanuska Valley 29 3.2 地球化學分析結果 39 3.2.1 Composite岩體 39 3.2.2 McKinley Sequence 46 3.2.3 Foraker岩體 49 3.3 鍶-釹同位素分析結果 50 3.4 鋯石鉿同位素分析結果 54 四、南阿拉斯加McKinley Sequence及相鄰岩體之岩石成因 59 4.1 火成岩與地質事件年代對比關係 59 4.2 鍶-釹同位素討論 61 4.2.1 Composite岩體與McKinley Sequence 61 4.2.2 McKinley Sequence中的A型花崗岩 62 4.2.3 Foraker岩體 62 4.2.4 與相鄰岩體對比 64 4.3 岩石成因 66 4.3.1 Late Cretaceous (emplacement of the Composite plutons) 66 4.3.2 Early Tertiary (emplacement of the McKinley Sequence) 66 4.3.3 Mid-Tertiary (emplacement of the Foraker pluton) 67 五、結論 69 六、參考文獻 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 阿拉斯加山脈 | zh_TW |
| dc.subject | 麥金利系列岩體 | zh_TW |
| dc.subject | 鋯石鈾鉛定年 | zh_TW |
| dc.subject | 鍶釹鉿同位素 | zh_TW |
| dc.subject | the McKinley Sequence | en |
| dc.subject | zircon U-Pb dating | en |
| dc.subject | Alaska Range | en |
| dc.subject | Sr-Nd isotopes | en |
| dc.subject | Hf isotope | en |
| dc.title | 阿拉斯加麥金利系列岩體之鋯石定年與地球化學研究 | zh_TW |
| dc.title | Zircon U-Pb Ages and Geochemical Characteristics of the McKinley Sequence and Associated Plutons, Central Alaska Range | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江博明,陳中華,藍晶瑩,羅清華 | |
| dc.subject.keyword | 阿拉斯加山脈,麥金利系列岩體,鋯石鈾鉛定年,鍶釹鉿同位素, | zh_TW |
| dc.subject.keyword | Alaska Range,the McKinley Sequence,zircon U-Pb dating,Sr-Nd isotopes,Hf isotope, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-24 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 6.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
