Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37102
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor譚義績
dc.contributor.authorYu-Zhang Wuen
dc.contributor.author吳郁璋zh_TW
dc.date.accessioned2021-06-13T15:19:14Z-
dc.date.available2013-07-24
dc.date.copyright2008-07-24
dc.date.issued2008
dc.date.submitted2008-07-24
dc.identifier.citation1. Basha, H.A. 1999. Multidimensional linearized nonsteady infiltration with prescribed boundary conditions at the soil surface. Water Resources Research 35(1): 75-83.
2. Basha, H.A. 2000. Multidimensional linearized nonsteady infiltration toward a shallow water table. Water Resources Research 36(9): 2567-2573.
3. Batu, V. 1980. Flow Net for Unsaturated Infiltration from Periodic Strip Sources. Water Resources Research 16(2): 284-288.
4. Batu, V. 1982. Time-Dependent, Linearized Two-Dimensional Infiltration and Evaporation from Nonuniform and Nonperiodic Strip Sources. Water Resources Research 18(6): 1725-1733.
5. Batu, V. 1983. Time-Dependent Linearized Two-Dimensional Infiltration and Evaporation from Nonuniform and Periodic Strip Sources. Water Resources Research 19(6): 1523-1529.
6. Bezborodov, G.A. & Khalbayeva, R.A. 1984. Influence of Earthworms on Soil Permeability. Soviet Soil Science 15(1): 98-101.
7. Blaustein, A.R., Kiesecker, J.M., Chivers, D.P. & Anthony, R.G. 1997. Ambient UV-B radiation causes deformities in amphibian embryos. Proceedings of the National Academy of Sciences of the United States of America 94(25): 13735-13737.
8. Buckerfield, J.C., 1994 Appropriate earthworms for agriculture and vermiculture. Technical Report, 2/1994. CSIRO Australia, Division of Soils: Adelaide.
9. Chen, J.M., Tan, Y.C. & Chen, C.H. 2001a. Multidimensional infiltration with arbitrary surface fluxes. Journal of Irrigation and Drainage Engineering-Asce 127(6): 370-377.
10. Chen, J.M., Tan, Y.C., Chen, C.H. & Parlange, J.Y. 2001b. Analytical solutions for linearized Richards equation with arbitrary time-dependent surface fluxes. Water Resources Research 37(4): 1091-1093.
11. Chen, J.M., Y.C. Tan and Y.Z. Wu, 2008, Analysis of Infiltration of 2D Trickle Irrigation under Multiple-Line Sources, Hydrological Processes 22(14): 2657-2666.
12. Darwin C., 1881. The formation of vegetable mould through the action of worms, with observation of their habits. London. John Murray. Reviewed by Edwards (1996).
13. Edwards, C.A. & Bohlen, P.J. 1996. Biology and ecology of earthworms. 3rd ed. xii, 426 p. p. Chapman & Hall, London.
14. Edwards C. A., 1998, Earthworm Ecology. Soil and Water Conservation Society, Ankeny, Iowa.
15. Ehlers, W. 1975. Observations on Earthworm Channels and Infiltration on Tilled and Untilled Loess Soil. Soil Science 119(3): 242-249.
16. Evans, A.C. & Guild, W.J.M. 1947. Studies on the Relationships between Earthworms and Soil Fertility .1. Biological Studies in the Field. Annals of Applied Biology 34(3): 307-330.
17. Evans, A.C. & Guild, W.J.M. 1948. Studies on the Relationships between Earthworms and Soil Fertility .4. On the Life Cycles of Some British Lumbricidae. Annals of Applied Biology 35(4): 471-484.
18. Evans, L.C. 1998. Partial differential equations. xvii, 662 p. p. American Mathematical Society, Providence, Rhode Island.
19. Gerard, B.M. 1967. Factors Affecting Earthworms in Pastures. Journal of Animal Ecology 36(1): 235-252.
20. Grant, W. C., 1955, Studies on moisture relationships in earthworms. Ecology, 36(3), 400-407.
21. Hess, W. N., 1924. Reactions to light in the earthworm, Lumbricus terrestris. J. Morph., 39, 515-542.
22. Holm-Hansen, O., Helbling, E.W. & Lubin, D. 1993. Ultraviolet-Radiation in Antarctica - Inhibition of Primary Production. Photochemistry and Photobiology 58(4): 567-570.
23. Howell, C. D., 1939. The response to light in the earthworm Pheretima agrestis Goto and Hatai with special reference to the function of the nervous system. J. Exp. Zool., 81, 231-59.
24. Joschko, M., Diestel, H. & Larink, O. 1989. Assessment of Earthworm Burrowing Efficiency in Compacted Soil with a Combination of Morphological and Soil Physical Measurements. Biology and Fertility of Soils 8(3): 191-196.
25. Kretzschmar, A. 1991. Burrowing Ability of the Earthworm Aporrectodea-Longa Limited by Soil Compaction and Water Potential. Biology and Fertility of Soils 11(1): 48-51.
26. Kretzschmar, A. & Bruchou, C. 1991. Weight Response to the Soil-Water Potential of the Earthworm Aporrectodea longa. Biology and Fertility of Soils 12(3): 209-212.
27. Lankester, E.R. 1921. Earthworms drowned in puddles. Nature 107: 329-330.
28. Lavelle P., 1978. Les vers de terre de la savane de Lamto (Cote d'Ivoire). Peuplements, populations et functions dans l'ecosysteme. Ph D University of Paris. Reviewed by Edwards (1996).
29. Laverack, M.S. 1961. Tactile and Chemical Perception in Earthworms .2. Responses to Acid Ph Solutions. Comparative Biochemistry and Physiology 2(1): 22-34.
30. Mangold, O., 1951. Experiments in analysis of earthworms. I. Methods and procedure for leaves of plants. Zool. Jb. (Physiol), 62, 441-512.
31. Mangold, O.,1953. Experimente zur Analyse des chemischen Sinns des Regenwurms. 2. Versuche mit Chinin, Sauren und Susstoffen. Zool. Jb. Abt. Allem. Zool. Physiol. Tiere., 63, 501-57.
32. Marsden, J. E. & Hoffman, M.J. 1974. Elementary classical analysis. 2nd ed. xiv, 738 p. p. W. H. Freeman, New York.
33. Merker, E., and Braunig, G., 1927. Die Empfindlickeit feuchthautiger tiere im Lichte. 3. Die Atemnot feuchthautiger Tiere in Licht der Quarzquecksiblerlampe. Zool. Jb. Abt. Allgem. Zool. Physiol. Tiere, 43, 275-338.
34. Moor, A. R., 1923,Muscle tensionand reflexes in the earthworm. J. Gen. Physiol., 5, 327-333.
35. Morel- seytoux, H.J. 1978. Derivation of Equations for Variable Rainfall Infiltration. Water Resources Research 14(4): 561-568.
36. Morel- seytoux, H.J. 1982. Analytical Results for Prediction of Variable Rainfall Infiltration. Journal of Hydrology 59(3-4): 209-230.
37. Mortel, R.T. 1998. Ribats in Mecca during the medieval period: A descriptive study based on literary sources (Islamic pious foundations). Bulletin of the School of Oriental and African Studies-University of London 61: 29-50.
38. Nagano T., 1934. The duration of life of earthworms in water and in pure gases. Sci Report Tohoku Imperial Univer. B 9(2&3):97-109.
39. Nordstrm, S. & Rundgren, S., 1974. Environmental Factors and Lumbricid Associations in Southern Sweden. Pedobiologia 14(1): 1-27.
40. Quisenberry, V.L. & Phillips, R.E. 1976. Percolation of Surface-Applied Water in Field. Soil Science Society of America Journal 40(4): 484-489.
41. Raats, P. A. C., and Gardner, W. R., 1974. ‘‘Movement of water in the unsaturated zone near a watertable.’’ J. Van Schilfgaarde, ed., Drainage for agriculture: Agronomy, Vol. 17, 311–405.
42. Ramsay, J. A., 1949. Osmotic relations of worms. J. Exp. Biol., 26(1), 65-75.
43. Raty, M. 2004. Growth of Lumbricus terrestris and Aporrectodea caliginosa in an acid forest soil, and their effects on enchytraeid populations and soil properties. Pedobiologia 48(4): 321-328.
44. Richards, L.A. 1931. Capillary conduction of liquids through porous mediums. Physics-a Journal of General and Applied Physics 1(1): 318-333.
45. Roots, B.I. 1956. The Water Relations of Earthworms .2. Resistance to Desiccation and Immersion, and Behaviour When Submerged and When Allowed a Choice of Environment. Journal of Experimental Biology 33(1): 29-44.
46. Rudin, W. 1985. Principles of mathematical analysis. 3rd ed. x, 342 p. p. Central Book Company, Taipei.
47. Satchell, J. E., 1995, The effects of BHC, DDT and parathion on the soil fauna. Soils and Fert., 18(4), 279-285.
48. Soni, A.K. & Joshi, P.C. 1997. High sensitivity of Tubifex for ultraviolet-B. Biochemical and Biophysical Research Communications 231(3): 818-819.
49. Srivastava, R. & Yeh, T.C.J. 1991. Analytical Solutions for One-Dimensional, Transient Infiltration toward the Water-Table in Homogeneous and Layered Soils. Water Resources Research 27(5): 753-762.
50. Trout, T.J. & Johnson, G.S. 1989. Earthworms and Furrow Irrigation Infiltration. Transactions of the ASCE 32(5): 1594-1598.
51. Van Genuchten, M.T. 1980. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal 44(5): 892-898.
52. Warrick, A.W. 1975. Analytical Solutions to One-Dimensional Linearized Moisture Flow Equation for Arbitrary Input. Soil Science 120(2): 79-84.
53. Wever, L.A., Lysyk, T.J. & Clapperton, M.J. 2001. The influence of soil moisture and temperature on the survival, aestivation, growth and development of juvenile Aporrectodea tuberculata (Eisen) (Lumbricidae). Pedobiologia 45(2): 121-133.
54. Wittich, W., 1953. Untersuchungen uber den Verlauf der Streuzersetzung auf einem Boden mit Regenwurmtatigkeit. Schrift Reige forstl. Fak. Univ. Gottingen, 9, 7-33. Reviewed by Edwards (1996).
55. Wolf, A. V. 1940., Paths of water exchange in the earthworm. Physiol Zoology, 13, 294-308.
56. Zachmann, J.E. & Linden, D.R. 1989. Earthworm Effects on Corn Residue Breakdown and Infiltration. Soil Science Society of America Journal 53(6): 1846-1849.
57. Zachmann, J.E., Linden, D.R. & Clapp, C.E. 1987. Macroporous Infiltration and Redistribution as Affected by Earthworms, Tillage, and Residue. Soil Science Society of America Journal 51(6): 1580-1586.
58. 張文亮, 1992。蚯蚓活動改變表土入滲之研究。農業工程學報 38:62-68。
59. 吳佳倖, 2003。蚯蚓雨後漫遊地表與含氮廢物排泄之關連性探討,國立臺灣大學動物學研究所碩士學位論文。
60. 莊淑君, 2004。蚯蚓照射紫外線A或紫外線B(UV-A or UV-B)後對爬行行為、呼吸及體表氧化壓力之硏究,國立臺灣大學動物學研究所博士學位論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37102-
dc.description.abstract本文目的為研究土壤含水量對於蚯蚓移動行為之影響,其中包括三項,其一,乾燥地表蚯蚓移動之情形,其二,降雨蚯蚓之移動情形,其三,健康狀況不佳蚯蚓下雨移動情形。文中假設蚯蚓活動之土壤俱有均質性,並假設蚯蚓居住在生長曲線較高之土壤較為舒適,並往其方向移動,本文主要提出蚯蚓含水量控制方程式來描述蚯蚓鑽土行為,方程式中使用之參數皆為實驗室可得量測的參數,包括水力傳導係數與蚯蚓鑽地表的速度,其方程可求得蚯蚓於地表下之移動速度,積分後可得蚯蚓在土壤中的位置與時間之關係。由於紫外線易造成蚯蚓麻痺,故其方程式計算終止於蚯蚓爬出至地表。本研究以一維蚯蚓含水量控制方程式模擬,模擬結果包括,其一,在乾燥地表情況下,蚯蚓會往地底下移動;其二,降雨量越大,蚯蚓越容易爬至地表;其三,健康狀況不佳之蚯蚓下雨時越有可能爬出至地表,並與前人的研究有相同的趨勢。zh_TW
dc.description.abstractThe purpose of this study is to discuss the influences of the soil water content on earthworm movements. Three situations including earthworm movement in the soil with dry surface, and the movement of either healthy or sick earthworms in the soil during rainfall via numerical simulations were studied. This study was based upon two assumptions. First, the earthworms inhabit in the homogenous soil. Second, The earthworms go towards the soil with higher growth curve. Here, an 1-D earthworm movement-water content governing equation (EWE) was proposed to describe the relationship between earthworm movement and soil water content. The relationship between displacement of the earthworms and time, thus, was derived by integrating EWE with time. The simulation of the earthworm movement required with some experimental parameters, such as hydraulic conductivities, the theory maximum drilling velocity (TMDV) of the earthworm, etc. The simulation of earthworm movement was terminated once the earthworms reached the ground surface, since ultraviolet radiation can cause earthworms paralysis based upon the previous studies. The numerical simulation results match with the previous studies and show that (1) earthworms manage to move downwards to the soil as ground surface is drying, (2) earthworms tend to move to the surface under greater rainfall intensity, and (3) earthworms are more likely to move to the surface at rainfall while they are sick. All of the three conclusion match with the with former observations.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:19:14Z (GMT). No. of bitstreams: 1
ntu-97-R95622027-1.pdf: 981259 bytes, checksum: 5de45c15028df5923ceb21b8af944a17 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目錄
第一章、前言 7
1.1、研究動機 7
1.2、研究目的 8
1.3、研究方法 8
1.4、本文架構 11
第二章、文獻回顧 13
2.1、蚯蚓移動與土壤特性 13
2.2、蚯蚓生長與含水量 14
2.3、下雨與土壤含水量 14
第三章、理論 16
3.1、蚯蚓移動速度 16
3.2、一維土壤含水量 19
3.3、一維蚯蚓移動模式 21
3.4、模擬限制 26
3.5、地表乾燥之淺層土壤蚯蚓位置分析理論 27
3.6、一般土壤蚯蚓移動路徑理論 29
3.7、紫外線照射後蚯蚓鑽土能力分析理論 31
第四章、案例探討 33
4.1、生長曲線 33
4.2、長期無雨的土壤 35
4.3、降雨時蚯蚓之移動 41
4.3.1、水力傳導係數為316mm/day(1倍) 41
4.3.2、水力傳導係數為632mm/day(2倍) 45
4.3.3、水力傳導係數為948mm/day(3倍) 48
4.3.4、水力傳導係數為1264mm/day(4倍) 51
4.3.5、水力傳導係數為1491.5mm/day(4.72倍) 54
4.4、討論 57
第五章、結論與建議 72
5.1、結論 72
5.2、建議 73
參考文獻 74
附錄 81
附錄一 81
附錄二 84
附錄三 86
附錄四 89
附錄五 90
索引 93
dc.language.isozh-TW
dc.subject蚯蚓含水量控制方程式zh_TW
dc.subject蚯蚓zh_TW
dc.subject土壤含水量zh_TW
dc.subject生長曲線zh_TW
dc.subjectsoil water contenten
dc.subjectgrowth curveen
dc.subjectmovement-water content governing equationen
dc.subjectearthwormen
dc.title以體積含水比估計蚯蚓移動路徑zh_TW
dc.titleEstimating The Moving Routes Of Earthworm By Volumetric Water Contenten
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余化龍,陳俊宏,李後晶,林允斌
dc.subject.keyword蚯蚓,土壤含水量,生長曲線,蚯蚓含水量控制方程式,zh_TW
dc.subject.keywordearthworm,soil water content,growth curve,movement-water content governing equation,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2008-07-24
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
958.26 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved