Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 臨床藥學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37101
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張上淳
dc.contributor.authorYee-Jen Wuen
dc.contributor.author吳宜真zh_TW
dc.date.accessioned2021-06-13T15:19:13Z-
dc.date.available2013-08-13
dc.date.copyright2008-08-13
dc.date.issued2008
dc.date.submitted2008-07-24
dc.identifier.citation1. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004;39:309-17.
2. van Delden C. Pseudomonas aeruginosa bloodstream infections: how should we treat them? Int J Antimicrob Agents 2007;30 (Suppl 1):S71-5.
3. Hsueh PR, Chen WH, Luh KT. Relationships between antimicrobial use and antimicrobial resistance in Gram-negative bacteria causing nosocomial infections from 1991-2003 at a university hospital in Taiwan. Int J Antimicrob Agents 2005;26:463-72.
4. Paul M, Soares-Weiser K, Leibovici L. Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for fever with neutropenia: systematic review and meta-analysis. Br Med J 2003;326:1111.
5. Paul M, Benuri-Silbiger I, Soares-Weiser K, Leibovici L. Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis orf randomised trials. Br Med J 2004;328:668.
6. Paul M, Soares-Weiser K, Grozinsky S, Leibovici L. Beta-lactam versus beta-lactam-aminoglycoside combination therapy in cancer patients with neutropaenia. Cochrane Database Syst Rev 2003:CD003038.
7. Safdar N, Handelsman J, Maki DG. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis 2004;4:519-27.
8. Chamot E, Boffi El Amari E, Rohner P, Van Delden C. Effectiveness of combination antimicrobial therapy for Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2003;47:2756-64.
9. Kang CI, Kim SH, Kim HB, et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis 2003;37:745-51.
10. Lodise TP, Jr., Patel N, Kwa A, et al. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother 2007;51:3510-5.
11. Chatzinikolaou I, Abi-Said D, Bodey GP, Rolston KV, Tarrand JJ, Samonis G. Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: Retrospective analysis of 245 episodes. Arch Intern Med 2000;160:501-9.
12. Vidal F, Mensa J, Almela M, et al. Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment. Analysis of 189 episodes. Arch Intern Med 1996;156:2121-6.
13. Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 2000;118:146-55.
14. Zaragoza R, Artero A, Camarena JJ, Sancho S, Gonzalez R, Nogueira JM. The influence of inadequate empirical antimicrobial treatment on patients with bloodstream infections in an intensive care unit. Clin Microbiol Infect 2003;9:412-8.
15. Fujitani S, Moffett KS, Paterson DL. Pseudomonas aeruginosa (Accessed May, 15, 2008, at http:// www.antimicrobe.org/.)
16. Pier G, Ramphal R. Psuedomonas aeruginosa. In: Mandell GL, Bennett JE, Dolin R, eds. Mandell, Douglas, and Bennett's principles and practice of infectious diseases. 6 ed. Philadelphia: Churchill Livingstone; 2005:2587-615.
17. Stover CK, Pham XQ, Erwin AL, et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 2000;406:959-64.
18. Rossolini GM, Mantengoli E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect 2005;11 (Suppl) 4:17-32.
19. Mesaros N, Nordmann P, Plesiat P, et al. Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect 2007;13:560-78.
20. Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med 2002;165:867-903.
21. Hancock RE. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis 1998;27 (Suppl 1):S93-9.
22. Vaisvila R, Morgan RD, Posfai J, Raleigh EA. Discovery and distribution of super-integrons among pseudomonads. Mol Microbiol 2001;42:587-601.
23. Dalhoff A, Janjic N, Echols R. Redefining penems. Biochem Pharmacol 2006;71:1085-95.
24. Studemeister AE, Quinn JP. Selective imipenem resistance in Pseudomonas aeruginosa associated with diminished outer membrane permeability. Antimicrob Agents Chemother 1988;32:1267-8.
25. Ziha-Zarifi I, Llanes C, Kohler T, Pechere JC, Plesiat P. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob Agents Chemother 1999;43:287-91.
26. Pumbwe L, Piddock LJ. Two efflux systems expressed simultaneously in multidrug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2000;44:2861-4.
27. Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 2001;3:255-64.
28. Hocquet D, Nordmann P, El Garch F, Cabanne L, Plesiat P. Involvement of the MexXY-OprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006;50:1347-51.
29. Obritsch MD, Fish DN, MacLaren R, Jung R. Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy 2005;25:1353-64.
30. Livermore DM. beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995;8:557-84.
31. Poole K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005;49:479-87.
32. Jalal S, Wretlind B. Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Microb Drug Resist 1998;4:257-61.
33. Evans ME, Feola DJ, Rapp RP. Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. Ann Pharmacother 1999;33:960-7.
34. Groisman EA, Kayser J, Soncini FC. Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J Bacteriol 1997;179:7040-5.
35. Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 2002;34:634-40.
36. Hachem RY, Chemaly RF, Ahmar CA, et al. Colistin is effective in treatment of infections caused by multidrug-resistant Pseudomonas aeruginosa in cancer patients. Antimicrob Agents Chemother 2007;51:1905-11.
37. Lodise TP, Miller CD, Graves J, et al. Clinical prediction tool to identify patients with Pseudomonas aeruginosa respiratory tract infections at greatest risk for multidrug resistance. Antimicrob Agents Chemother 2007;51:417-22.
38. Ortega B, Groeneveld AB, Schultsz C. Endemic multidrug-resistant Pseudomonas aeruginosa in critically ill patients. Infect Control Hosp Epidemiol 2004;25:825-31.
39. Agodi A, Barchitta M, Cipresso R, Giaquinta L, Romeo MA, Denaro C. Pseudomonas aeruginosa carriage, colonization, and infection in ICU patients. Intensive Care Med 2007;33:1155-61.
40. Obritsch MD, Fish DN, MacLaren R, Jung R. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother 2004;48:4606-10.
41. Karlowsky JA, Draghi DC, Jones ME, Thornsberry C, Friedland IR, Sahm DF. Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from hospitalized patients in the United States, 1998 to 2001. Antimicrob Agents Chemother 2003;47:1681-8.
42. Karlowsky JA, Jones ME, Thornsberry C, Evangelista AT, Yee YC, Sahm DF. Stable antimicrobial susceptibility rates for clinical isolates of Pseudomonas aeruginosa from the 2001-2003 tracking resistance in the United States today surveillance studies. Clin Infect Dis 2005;40 (Suppl 2):S89-98.
43. Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother 2006;50:43-8.
44. Cao B, Wang H, Sun H, Zhu Y, Chen M. Risk factors and clinical outcomes of nosocomial multi-drug resistant Pseudomonas aeruginosa infections. J Hosp Infect 2004;57:112-8.
45. Paramythiotou E, Lucet JC, Timsit JF, et al. Acquisition of multidrug-resistant Pseudomonas aeruginosa in patients in intensive care units: role of antibiotics with antipseudomonal activity. Clin Infect Dis 2004;38:670-7.
46. Gales AC, Jones RN, Turnidge J, Rennie R, Ramphal R. Characterization of Pseudomonas aeruginosa isolates: occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis 2001;32 (Suppl 2):S146-55.
47. Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 2007;67:351-68.
48. Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit Care Med 1999;27:887-92.
49. Gaynes R, Edwards JR. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis 2005;41:848-54.
50. Schimpff SC, Greene WH, Young VM, Wiernik PH. Significance of Pseudomonas aeruginosa in the patient with leukemia or lymphoma. J Infect Dis 1974;130 Suppl:S24-31.
51. Kuikka A, Valtonen VV. Factors associated with improved outcome of Pseudomonas aeruginosa bacteremia in a Finnish university hospital. Eur J Clin Microbiol Infect Dis 1998;17:701-8.
52. Harbarth S, Ferriere K, Hugonnet S, Ricou B, Suter P, Pittet D. Epidemiology and prognostic determinants of bloodstream infections in surgical intensive care. Arch Surg 2002;137:1353-9; discussion 9.
53. Taneja N, Emmanuel R, Chari PS, Sharma M. A prospective study of hospital-acquired infections in burn patients at a tertiary care referral centre in North India. Burns 2004;30:665-9.
54. Kang CI, Kim SH, Park WB, et al. Clinical features and outcome of patients with community-acquired Pseudomonas aeruginosa bacteraemia. Clin Microbiol Infect 2005;11:415-8.
55. Scarsi KK, Feinglass JM, Scheetz MH, Postelnick MJ, Bolon MK, Noskin GA. Impact of inactive empiric antimicrobial therapy on inpatient mortality and length of stay. Antimicrob Agents Chemother 2006;50:3355-60.
56. Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ, Kollef MH. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother 2005;49:1306-11.
57. Osih RB, McGregor JC, Rich SE, et al. Impact of empiric antibiotic therapy on outcomes in patients with Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2007;51:839-44.
58. Wu CJ, Lee HC, Lee NY, et al. Predominance of Gram-negative bacilli and increasing antimicrobial resistance in nosocomial bloodstream infections at a university hospital in southern Taiwan, 1996-2003. J Microbiol Immunol Infect 2006;39:135-43.
59. Vidal F, Mensa J, Martinez JA, et al. Pseudomonas aeruginosa bacteremia in patients infected with human immunodeficiency virus type 1. Eur J Clin Microbiol Infect Dis 1999;18:473-7.
60. Revuz J, Penso D, Roujeau JC, et al. Toxic epidermal necrolysis. Clinical findings and prognosis factors in 87 patients. Arch Dermatol 1987;123:1160-5.
61. Abdulrazak A, Bitar ZI, Al-Shamali AA, Mobasher LA. Bacteriological study of diabetic foot infections. J Diabetes Complications 2005;19:138-41.
62. El Amari EB, Chamot E, Auckenthaler R, Pechere JC, Van Delden C. Influence of previous exposure to antibiotic therapy on the susceptibility pattern of Pseudomonas aeruginosa bacteremic isolates. Clin Infect Dis 2001;33:1859-64.
63. Tacconelli E, Tumbarello M, Bertagnolio S, et al. Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: analysis of trends in prevalence and epidemiology. Emerg Infect Dis 2002;8:220-1.
64. Georges B, Conil JM, Dubouix A, et al. Risk of emergence of Pseudomonas aeruginosa resistance to beta-lactam antibiotics in intensive care units. Crit Care Med 2006;34:1636-41.
65. Carmeli Y, Troillet N, Eliopoulos GM, Samore MH. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother 1999;43:1379-82.
66. Arruda EA, Marinho IS, Boulos M, et al. Nosocomial infections caused by multiresistant Pseudomonas aeruginosa. Infect Control Hosp Epidemiol 1999;20:620-3.
67. Philippe E, Weiss M, Shultz JM, Yeomans F, Ehrenkranz NJ. Emergence of highly antibiotic-resistant Pseudomonas aeruginosa in relation to duration of empirical antipseudomonal antibiotic treatment. Clin Perform Qual Health Care 1999;7:83-7.
68. Harris A, Torres-Viera C, Venkataraman L, DeGirolami P, Samore M, Carmeli Y. Epidemiology and clinical outcomes of patients with multiresistant Pseudomonas aeruginosa. Clin Infect Dis 1999;28:1128-33.
69. Harris AD, Perencevich E, Roghmann MC, Morris G, Kaye KS, Johnson JA. Risk factors for piperacillin-tazobactam-resistant Pseudomonas aeruginosa among hospitalized patients. Antimicrob Agents Chemother 2002;46:854-8.
70. Kang CI, Kim SH, Park WB, et al. Risk factors for antimicrobial resistance and influence of resistance on mortality in patients with bloodstream infection caused by Pseudomonas aeruginosa. Microb Drug Resist 2005;11:68-74.
71. Fortaleza CM, Freire MP, Filho Dde C, de Carvalho Ramos M. Risk factors for recovery of imipenem- or ceftazidime-resistant Pseudomonas aeruginosa among patients admitted to a teaching hospital in Brazil. Infect Control Hosp Epidemiol 2006;27:901-6.
72. Harris AD, Smith D, Johnson JA, Bradham DD, Roghmann MC. Risk factors for imipenem-resistant Pseudomonas aeruginosa among hospitalized patients. Clin Infect Dis 2002;34:340-5.
73. Ozkurt Z, Ertek M, Erol S, Altoparlak U, Akcay MN. The risk factors for acquisition of imipenem-resistant Pseudomonas aeruginosa in the burn unit. Burns 2005;31:870-3.
74. Zavascki AP, Cruz RP, Goldani LZ. Risk factors for imipenem-resistant Pseudomonas aeruginosa: a comparative analysis of two case-control studies in hospitalized patients. J Hosp Infect 2005;59:96-101.
75. Lautenbach E, Weiner MG, Nachamkin I, Bilker WB, Sheridan A, Fishman NO. Imipenem resistance among Pseudomonas aeruginosa isolates: risk factors for infection and impact of resistance on clinical and economic outcomes. Infect Control Hosp Epidemiol 2006;27:893-900.
76. Hsu DI, Okamoto MP, Murthy R, Wong-Beringer A. Fluoroquinolone-resistant Pseudomonas aeruginosa: risk factors for acquisition and impact on outcomes. J Antimicrob Chemother 2005;55:535-41.
77. Gasink LB, Fishman NO, Weiner MG, Nachamkin I, Bilker WB, Lautenbach E. Fluoroquinolone-resistant Pseudomonas aeruginosa: assessment of risk factors and clinical impact. Am J Med 2006;119:526 e19-25.
78. Gasink LB, Fishman NO, Nachamkin I, Bilker WB, Lautenbach E. Risk factors for and impact of infection or colonization with aztreonam-resistant Pseudomonas aeruginosa. Infect Control Hosp Epidemiol 2007;28:1175-80.
79. Jones RN, Kirby JT, Beach ML, Biedenbach DJ, Pfaller MA. Geographic variations in activity of broad-spectrum beta-lactams against Pseudomonas aeruginosa: summary of the worldwide SENTRY Antimicrobial Surveillance Program (1997-2000). Diagn Microbiol Infect Dis 2002;43:239-43.
80. Turner PJ. Meropenem activity against European isolates: report on the MYSTIC (Meropenem Yearly Susceptibility Test Information Collection) 2006 results. Diagn Microbiol Infect Dis 2008;60:185-92.
81. Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008;36:296-327.
82. Zelenitsky SA, Harding GK, Sun S, Ubhi K, Ariano RE. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: an antibiotic pharmacodynamic analysis. J Antimicrob Chemother 2003;52:668-74.
83. Hilf M, Yu VL, Sharp J, Zuravleff JJ, Korvick JA, Muder RR. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am J Med 1989;87:540-6.
84. Oie S, Uematsu T, Sawa A, et al. In vitro effects of combinations of antipseudomonal agents against seven strains of multidrug-resistant Pseudomonas aeruginosa. J Antimicrob Chemother 2003;52:911-4.
85. Drago L, De Vecchi E, Nicola L, Colombo A, Guerra A, Gismondo MR. Activity of levofloxacin and ciprofloxacin in combination with cefepime, ceftazidime, imipenem, piperacillin-tazobactam and amikacin against different Pseudomonas aeruginosa phenotypes and Acinetobacter spp. Chemotherapy 2004;50:202-10.
86. Erdem I, Kucukercan M, Ceran N. In vitro activity of combination therapy with cefepime, piperacillin-tazobactam, or meropenem with ciprofloxacin against multidrug-resistant Pseudomonas aeruginosa strains. Chemotherapy 2003;49:294-7.
87. Giamarellos-Bourboulis EJ, Grecka P, Giamarellou H. Comparative in vitro interactions of ceftazidime, meropenem, and imipenem with amikacin on multiresistant Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 1997;29:81-6.
88. Burgess DS, Hastings RW. Activity of piperacillin/tazobactam in combination with amikacin, ciprofloxacin, and trovafloxacin against Pseudomonas aeruginosa by time-kill. Diagn Microbiol Infect Dis 2000;38:37-41.
89. Chen YH, Peng CF, Lu PL, Tsai JJ, Chen TP. In vitro activities of antibiotic combinations against clincal isolates of Pseudomonas aeruginosa. Kaohsiung J Med Sci 2004;20:261-7.
90. Oie S, Sawa A, Kamiya A, Mizuno H. In-vitro effects of a combination of antipseudomonal antibiotics against multi-drug resistant Pseudomonas aeruginosa. J Antimicrob Chemother 1999;44:689-91.
91. Gunderson BW, Ibrahim KH, Hovde LB, Fromm TL, Reed MD, Rotschafer JC. Synergistic activity of colistin and ceftazidime against multiantibiotic-resistant Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 2003;47:905-9.
92. Paul M, Silbiger I, Grozinsky S, Soares-Weiser K, Leibovici L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev 2006:CD003344.
93. Bliziotis IA, Samonis G, Vardakas KZ, Chrysanthopoulou S, Falagas ME. Effect of aminoglycoside and beta-lactam combination therapy versus beta-lactam monotherapy on the emergence of antimicrobial resistance: a meta-analysis of randomized, controlled trials. Clin Infect Dis 2005;41:149-58.
94. Tapper ML, Armstrong D. Bacteremia due to Psueodmonas aeruginosa complicating neoplastic diseases: a progress report. J Infect Dis 1974;130(suppl):S14-23.
95. Mendelson MH, Gurtman A, Szabo S. Pseudomonas aeruginosa bacteremia in patients with AIDS. Clin Infect Dis 1994;18:886-95.
96. Leibovici L, Paul M, Poznanski O. Monotherapy versus beta-lactam-aminoglycoside combination treatment for gram-negative bacteremia: a prospective, observational study. Antimicrob Agents Chemother 1997;41:1127-33.
97. Furno P, Bucaneve G, Del Favero A. Monotherapy or aminoglycoside-containing combinations for empirical antibiotic treatment of febrile neutropenic patients: a meta-analysis. Lancet Infect Dis 2002;2:231-42.
98. Kollef MH. Inadequate antimicrobial treatment: an important determinant of outcome for hospitalized patients. Clin Infect Dis 2000;31 Suppl 4:S131-8.
99. Kollef MH, Sherman G, Ward S, Fraser VJ. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 1999;115:462-74.
100. Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med 2003;31:2742-51.
101. Bodey GP, Jadeja L, Elting L. Pseudomonas bacteremia. Retrospective analysis of 410 episodes. Arch Intern Med 1985;145:1621-9.
102. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373-83.
103. Chow JW, Yu VL. Combination antibiotic therapy versus monotherapy for gram-negative bacteraemia: a commentary. Int J Antimicrob Agents 1999;11:7-12.
104. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med 1985;13:818-29.
105. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 2003;31:1250-6.
106. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control 1988;16:128-40.
107. Valles J, Calbo E, Anoro E, et al. Bloodstream infections in adults: importance of healthcare-associated infections. The Journal of infection 2008;56:27-34.
108. Tam VH, Gamez EA, Weston JS, et al. Outcomes of bacteremia due to Pseudomonas aeruginosa with reduced susceptibility to piperacillin-tazobactam: implications on the appropriateness of the resistance breakpoint. Clin Infect Dis 2008;46:862-7.
109. Hyle EP, Gasink LB, Linkin DR, Bilker WB, Lautenbach E. Use of different thresholds of prior antimicrobial use in defining exposure: impact on the association between antimicrobial use and antimicrobial resistance. J Infect 2007;55:414-8.
110. Gasink LB, Zaoutis TE, Bilker WB, Lautenbach E. The categorization of prior antibiotic use: impact on the identification of risk factors for drug resistance in case control studies. Am J Infect Control 2007;35:638-42.
111. Kaye KS, Kanafani ZA, Dodds AE, Engemann JJ, Weber SG, Carmeli Y. Differential effects of levofloxacin and ciprofloxacin on the risk for isolation of quinolone-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006;50:2192-6.
112. Chen SC, Lawrence RH, Byth K, Sorrell TC. Pseudomonas aeruginosa bacteraemia. Is pancreatobiliary disease a risk factor? Med J Aust 1993;159:592-7.
113. Deviere J, Motte S, Dumonceau JM, Serruys E, Thys JP, Cremer M. Septicemia after endoscopic retrograde cholangiopancreatography. Endoscopy 1990;22:72-5.
114. Struelens MJ, Rost F, Deplano A, et al. Pseudomonas aeruginosa and Enterobacteriaceae bacteremia after biliary endoscopy: an outbreak investigation using DNA macrorestriction analysis. Am J Med 1993;95:489-98.
115. Szabo S, Mendelson MH, Mitty HA, Bruckner HW, Hirschman SZ. Infections associated with transhepatic biliary drainage devices. Am J Med 1987;82:921-6.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37101-
dc.description.abstract研究目的:
評估合併或單一抗生素治療以及經驗性治療適當與否對於綠膿桿菌菌血症患者之臨床治療效果,並辨別導致病人死亡之危險因子;另外也針對多重抗藥性綠膿桿菌菌血症患者進行危險因子分析。
研究設計、地點及對象:
此研究於國立臺灣大學醫學院附設醫院-臺灣一家醫學中心進行,為單中心、回溯性世代分析研究。研究對象為西元2007年1月1日至2007年11月31日期間感染綠膿桿菌菌血症之成年病患。
研究方法:
自行設計之個案報告表為本研究收集資料之基本工具,記錄紙本病歷以及電子病歷所記載之相關變項,包含病人基本資料、合併症、造成感染之潛在因子等,並於綠膿桿菌菌血症發作前三十天內,記錄是否有細菌感染之情形以及所使用的抗生素;在綠膿桿菌菌血症發作時,記錄可能感染源及臨床表徵、相關檢驗數據、細菌檢驗結果及感染嚴重程度之評估;於綠膿桿菌菌血症發作後,記錄使用之抗生素、後續細菌培養結果以及相關之預後因子,並以菌血症發作後之三十天(D30)死亡率為觀察終點。另外也針對感染多重抗藥性綠膿桿菌菌血症之病人進行危險因子之分析。統計方法包含單變項分析以及多變項羅吉斯迴歸分析,存活曲線以Kaplan-Meier method繪製,並以Log-rank test進行比較。
研究結果:
本研究共收集了186個事件,有120事件(65%)為單一菌種感染;病人之平均年齡為61.2±18.4歲,男性佔56%;病人之平均Charlson’s comorbidity index為4.09±2.37分,過去一個月內有使用過抗生素及抗綠膿桿菌抗生素之比例分別為76.2%及43.8%。菌血症發作當下病人之平均Pitt bacteremia score為3.8±3.5分,39.8%之患者有敗血性休克;經驗性治療使用合併治療者僅有14事件(7.7%),確切治療使用合併治療者有38事件(24.4%);由菌血症發作至使用適當抗生素之平均時間為34±46小時。有27事件(14.2%)為多重抗藥性綠膿桿菌菌血症感染。全體及單一菌種病人之D30總死亡率分別為41.4%及46.7%。
以單一菌種感染來說,經驗性合併或單一治療對於經驗性治療適當與否並無顯著之關係(77.8% vs. 61.5%,P=0.48),而經驗性合併或單一治療對於死亡率也無顯著影響(44.4% vs. 46.8%,P=1.00);另外,合併或單一治療對於是否會減少重疊感染、抗藥性菌種之產生於統計上並未有顯著之差異。
由多變項羅吉斯迴歸分析發現,感染MDRPA之危險因子有過去六個月內曾有MDRPA感染或移生(OR 28.27,P<0.0001)、過去三十天內有使用過carbapenem(OR 12.2,P=0.0001)、過去三十天內使用過fluoroquinolone(FQ)(OR 9.30,P=0.005)、腦血管疾病(OR 5.45,P=0.02)以及此次菌血症感染前之住院天數(OR 1.01,P=0.02)。
由多變項羅吉斯迴歸分析發現影響全部病人第七天(D7)死亡率的獨立危險因子有肝膽疾病(OR 5.15,P=0.0124)、Pitt bacteremia score (OR 1.93,P<0.0001)以及年齡(OR 1.04,P=0.02);影響單一菌種感染病人之D7死亡率的危險因子有:急性腎衰竭(OR 6.12,P=0.02)以及Pitt bacteremia score(OR 1.97,P<0.0001)。而影響全部病人D30死亡率之獨立危險因子有敗血性休克(OR 4.15,P=0.008)、肝膽疾病(OR 3.82,P=0.02)、之前使用過抗綠膿桿菌抗生素(OR 3.11,P=0.02)、免疫抑制劑之使用(OR 2.98,P=0.02)、Pitt bacteremia score (OR 1.52,P<0.0001)以及Charlson’s comorbidity index(OR 1.22,P=0.04),而多重菌種感染為保護因子(OR 0.31,P=0.02);影響單一菌種感染病人D30死亡率的危險因子有:院內感染(OR 7.64,P=0.01)、敗血性休克(OR 4.97,P=0.011)、免疫抑制劑之使用(OR 4.37,P=0.006)以及Pitt bacteremia score(OR 1.46,P=0.007)。經驗性合併治療與否以及經驗性治療適當與否於分析中並未顯著影響預後。
結論:
經驗性治療並不會影響到綠膿桿菌菌血症患者之預後;D30死亡率僅與病人本身之情況(Charlson’s comorbidity index、肝膽疾病、是否有使用免疫抑制劑)以及菌血症發作時之嚴重程度(Pitt bacteremia score、敗血性休克)有關;另外,過去有使用過FQ或是carbapenem者、住院較久、腦血管疾病者、先前已有多重抗藥性綠膿桿菌感染或移生者為易感染多重抗藥性綠膿桿菌菌株之危險族群。
zh_TW
dc.description.abstractObjectives:
This study is aim to evaluate the impact of antibiotic combination therapy and adequate empirical treatment on clinical outcomes and to identify the prognosis factors for Pseudomonas aeruginosa bacteremia. The other goal of this study is to investigate the risk factors for multidrug-resistant Pseudomonas aeruginosa (MDRPA) bacteremia.
Study location、design and study populations:
A retrospective cohort analysis was performed for all adult patients admitted to the National Taiwan University Hospital (NTUH) with positive P. aeruginosa blood culture between 1 January 2007 and 31 November 2007 .
Methods:
Data were collected from medical records and hospital computerized databases. The data retrieved for each patient included patients’ profile, underlying diseases, previous hospitalization history, previous P. aeruginosa infection or colonization history, antibiotics exposure before bacteremia onset, clinical presentation, antibiotics regimens at bacteremia onset, management and clinical response after bacteremia. The primary endpoint was 30 day all-caused mortality. Risk factors of MDRPA bacteremia were also analysed. Risk factors and clinical outcomes were examed using univariate analysis and multivariate logistic regression analysis. Survival curves shown by Kaplan-Meier method were compared with Log-rank test.
Result:
One hundred and eighty six episodes were included in this study, 120 (65%) were monomicrobial infections and 66 polymicrobial infections. Patients’ average age was 61.2±18.4 and 56% of them were male. The average Charlson comorbidity index of included patients was 4.09±2.37. Previous exposure to antibiotics and anti- Pseudomonas antibiotics were 76.2% and 43.8% respectively. Patients’ average Pitt bacteremia scores were 3.8±3.5. All episodes were presented with sepsis with 39.8% of septic shock. After the onset of symptoms, it took an average of 34±46 hours to initiate an adequate therapy. Empirical combination therapy was given only in 14 episodes (7.7%) and definitive combination therapy was used in 38 episodes (24.4%).There were 27 (14.2%) MDRPA episodes. The overall D30 mortality was 41.4%, and 46.7% for monomicrobial infections.
Empirical monotherapy and combination therapy provided comparably adequate therapy (77.8% vs. 61.5 %, P=0.48) with similar D30 mortality in combination therapy and monotherapy (44.4% vs. 46.8%, P=1.00). Also, the superinfection and emergence of resistance after the bacteremia onset did not differ significantly between two regimens.
Multivariate logistic regression identified the following variables as significant independent risk factors for MDRPA bacteremia: P. aeruginosa infection or colonization within previous 6 months (OR 28.27, P<0.0001), fluoroquinolone usage (OR 9.30, P=0.005), carbapenem usage (OR 12.2, P=0.0001), cerebrovascular accidents (OR 5.45, P=0.02) and lengh of hospital stay before bacteremia (OR 1.01, P=0.02).
Each of the following factors were independently associated with 30-day mortality in all patients: septic shock (OR 4.15, P=0.008), hepatobiliary diseases (OR 3.82, P=0.02), exposure to anti- Pseudomonas agents (OR 3.11, P=0.02), immunosuppressant (OR 2.98, P=0.02), Pitt bacteremia score (OR 1.52, P<0.0001) and Charlson’s comorbidity index (OR 1.22, P=0.04). Polymicrobial infection was a protective factor (OR 0.31, P=0.02). Empirical therapy was not significantly associated with mortality in all and monomicrobial patients.
Conclusion:
This study showed empirical therapy did not affect mortality in P. aeruginosa bacteremia patients. Patients’ comorbidity and severity of illness at bacteremia onset played important roles on mortality. Exposure to carbapenem and fluoroquinolone were associated with MDRPA bacteremia acquisition.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:19:13Z (GMT). No. of bitstreams: 1
ntu-97-R95451008-1.pdf: 777458 bytes, checksum: 0b161d9883c1c1b21974e98d7140a90a (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract vi
目錄 ix
圖目錄 xi
表目錄 xii
中英對照表 xiv
第一章 緒論 1
第二章 文獻探討 3
第1節 細菌學 3
第2節 流行病學 7
第3節 綠膿桿菌菌血症之感染 10
第4節 綠膿桿菌之體外藥物敏感性試驗 17
第5節 綠膿桿菌之治療 18
第6節 綠膿桿菌單一治療及合併治療 18
第7節 抗生素治療適當與否及延遲與預後之關係 23
第8節 綠膿桿菌菌血症之死亡危險因子 24
第三章 研究目的 26
第四章 研究方法 27
第1節 研究架構 27
第2節 研究地點及研究對象 28
第3節 資料收集 28
第4節 名詞定義 33
第5節 統計分析方法 36
第五章 研究結果 37
第1節 描述性統計 37
第2節 感染多重抗藥性綠膿桿菌菌血症之單變項統計分析 61
第3節 感染多重抗藥性綠膿桿菌菌血症之多變項統計分析 67
第4節 存活曲線 67
第5節 死亡危險因子之單變項統計分析 71
第6節 死亡危險因子之多變項統計分析 82
第六章 討論 84
第1節 感染綠膿桿菌菌血症之病人族群 84
第2節 抗生素治療 84
第3節 感染多重抗藥性綠膿桿菌菌血症之危險因子 91
第4節 死亡率分析 93
第5節 死亡之危險因子 94
第6節 研究限制 97
第七章 結論 100
第八章 參考資料 101
dc.language.isozh-TW
dc.subject綠膿桿菌zh_TW
dc.subject菌血症zh_TW
dc.subject多重抗藥性綠膿桿菌zh_TW
dc.subject危險因子zh_TW
dc.subject治療zh_TW
dc.subject預後zh_TW
dc.subjectbacteremiaen
dc.subjectmultidrug-resistant Psuedomonas aeruginosaen
dc.subjectrisk factorsen
dc.subjectmortalityen
dc.subjecttreatment outcomesen
dc.subjectPsuedomonas aeruginosaen
dc.title綠膿桿菌菌血症之預後因子及感染多重抗藥性綠膿桿菌菌血症之危險因子分析:著重於抗生素治療之影響zh_TW
dc.titleAnalysis of prognosis factors for Pseudomonas aeruginosa bacteremia and risk factors for multidrug-resistant Pseudomonas aeruginosa bacteremia with emphasis on the effect of
antimicrobial therapy
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor林淑文
dc.contributor.oralexamcommittee陳宜君,林慧玲
dc.subject.keyword綠膿桿菌,菌血症,多重抗藥性綠膿桿菌,危險因子,治療,預後,zh_TW
dc.subject.keywordPsuedomonas aeruginosa,bacteremia,multidrug-resistant Psuedomonas aeruginosa,risk factors,treatment outcomes,mortality,en
dc.relation.page122
dc.rights.note有償授權
dc.date.accepted2008-07-24
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床藥學研究所zh_TW
顯示於系所單位:臨床藥學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
759.24 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved