請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37097完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳誠亮 | |
| dc.contributor.author | Cheng-Hsi Hsu | en |
| dc.contributor.author | 許正熹 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:19:09Z | - |
| dc.date.available | 2011-07-26 | |
| dc.date.copyright | 2008-07-26 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-24 | |
| dc.identifier.citation | [1] B. Linnhoff, D. W. Townsend, D. Boland and G. F. Hewitt User Guide on Process
Integration for the Ef cient Use of Energy,' Institution of Chemical Engineers, 1982. [2] Brooke, A., Kendrick. D., Meeraus, A., Raman, R., and Rosenthal, R. E. GMAS : A User's Guide, GAMS Development Corporation. [3] C. C. Yu and C. Y. Cheng Optimal Region for Design and Control of Ternary Systems,' AIChE, 2003. [4] C Judson King Separation Processes, McGraw-Hill, 1970. [5] C. S. Robinson and E. R. Gilliland Elements of Fractional Distillation, McGraw- Hill Book Co., 1950. [6] H. C. Cheng and W. L. Luyben Heat-Integrated Distillation Columns for Ternary Separations,' Ind. Eng. Chem. Process Des. Dev., no. 24, pp. 707{713, 1985. [7] H. K. Engelien and S. Skogestad Multi-effect distillation applied to an industrial case study,' Chemical Engineering and Processing, no. 44, pp. 819{826, 2005. [8] I. J. Halvorsen Minimum Energy Requirements in Complex Distillation Arrangements, PhD thesis, Norwegian University of Science and Technology, 2001. [9] I. J. Halvorsen and S. Skogestad Minimum Energy Consumption in Multicomponent Distillation. 2. Three-Product Petlyuk Arrangements,' Ind. Eng. Chem. Res., 2003. [10] I. J. Halvorsen and S. Skogestad Minimum Energy Consumption in Multicomponent Distillation. 1. Vmin Diagram for Two Product Column,' Ind. Eng. Chem. Res., no. 42, pp. 596{604, 2003a. [11] James M. Douglas Conceptual Design of Chemical Processes, McGraw-Hill, Inc., 1988. [12] Luyben,W. L. Plantwide Dynamic Simulators In Chemical Processing and Control, Marcel Dekker, 2002. [13] M. Emtir, P. Mizsey, E. Rev, and Z. Fonyo Economic and Controllability Investigation and Comparison of Energy-Integrated Distillation Schemes,' Chem. Biochem. Eng., no. 17, pp. 31{42, 2003. [14] M. J. Andrecovich and A. W. Westerberg A Simple Synthesis Mtehod Based on Utility Bounding for Heat-Integrated Distillation Sequences,' AIChE, 1985. [15] P. C. Wankant Multieffect Distillation Processes,' Ind. Eng. Chem. Res., no. 32, pp. 894{905, 1993. [16] T. P. Chiang and W. L. Luyben Comparison of Energy Consumption in Five Heat- Integrated Distillation Con guations,' I and EC Oricess Des. Develop, no. 22, pp. 99{104, 1983. [17] Viswanathan, J., and Grossmann, I. E. A combined penalty function and outer approximation method for MINLP optimization,' Comp. Chem. Eng., vol. 14, pp. 769, 1990. [18] Viswanathan, J., and Grossmann, I. E. An Alternate MINLP Model for Finding the Number of Trays Required for A Speci ed Separation Objective ,' Computers Chemical Engineering, vol. 17, pp. 949{955, 9 1993. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37097 | - |
| dc.description.abstract | 由於能源價格不斷上漲,而新興能源卻仍處於發展階段,因此,如何有效率地使用能源已然成為工業製程上相當重視的議題。在一般化工廠中,蒸餾程序扮演著高耗能的角色,自然而然也成為專家學者們重點探討之對象。其主要目的在於設計出適當的蒸餾塔操作方式來達成節約能源之效果,如此既可降低操作成本以符合經濟效益,亦能減低對環境所造成之衝擊。多效蒸餾塔(Multi-effect Distillation Columns)之概念早於1950年由Robinson與Gilliland所提出;藉由增加某些蒸餾塔的操作壓力造成塔與塔之間的溫度差,並進一步針對多根蒸餾塔進行熱整合,達到能量再利用及減少能量消耗之目的。
以超結構為基礎,本研究將提出一套完整的數學模式來描述多效蒸餾系統,並針對該系統進行最適化設計。其中設計目標包含了最小化能量使用以及最小化年總成本,依據不同的目標則可決定出不同之最佳操作情況。於本文中,由所提出之數學模式得到的設計結果將先與underwood’s method的結果比較,以確認其可靠性,再與傳統蒸餾系統做詳細之成本比較,以說明多效蒸餾系統確實能夠有效地節省能量使用並降低年總成本。另外,透過一系列例子的討論與分析,可歸納出不同進料狀態與最適蒸餾架構之間的關係。 | zh_TW |
| dc.description.abstract | Owing to the rising cost of energy and the fact that new energy resources are not yet available to all, how to utilize energy in an efficient way has become an important issue for industrial processes. In normal chemical works, the distillation process plays the most part in consuming energy and naturally turns into the major subject to be investigated by many savants. The main objective is to design an applicable mode for the manipulation of distillation columns which achieves the energy saving. Therefore, not only the operating cost can be reduced but the environmental impact will be also lowered. The concept of multi-effect distillation columns had been introduced in 1950 by Robinson and Gilliland: The temperature differences (for heat exchange) between distillation columns can be produced by increasing the pressure in some columns, and heat integration within the distillation system is then carried out for the purpose of energy recovery and energy saving.
Based on a superstructure which incorporates all possible schemes, this work aims to propose a general mixed-integer nonlinear programming (MINLP) formulation for modeling and optimizing the multi-effect distillation system, where design objectives include the minimization of energy consumption and the minimization of total annual cost (TAC). Accordingly, optimal operating conditions can be obtained with different design objectives. For one thing, results from the proposed mathematical formulation will be compared with the results from Underwood’s method to confirm its validness. For the next, the results of multi-effect distillation system are also compared with the results of conventional distillation system to illustrate that the multi-effect distillation columns are actually capable of reducing the energy consumption and the total annual cost. Furthermore, the correlation between feed condition and resultant framework of distillation can be generalized through discussions on a series of examples. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:19:09Z (GMT). No. of bitstreams: 1 ntu-97-R95524072-1.pdf: 2064843 bytes, checksum: d70041875c66e330324beaa177d27193 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員審定書......................................i
誌謝..............................................iii 摘要............................................... v Abstract...........................................vii 附圖目錄..........................................xiii 附表目錄..........................................xvii 1 緒論...............................................1 1.1 前言...........................................1 1.2 多效蒸餾塔之原理與結構背景.....................2 1.3 文獻回顧與當前之技術背景.......................6 1.4 研究動機與目的................................8 1.5 組織章節......................................9 2 蒸餾塔理論最小蒸氣量之計算........................11 2.1 計算背景說明..................................11 2.2 計算流程舉例說明..............................14 3 多效蒸餾族逐層式超結構模式建構....................19 3.1 模式建立之背景說明............................19 3.2 模式建立之基本假設條件........................20 3.3 模式建立流程之介紹............................22 3.4 模式之符號集合系統參數與系統變數 (Indices, Sets, Parameters, and Variables).....24 3.5 限制式(Constraints)...........................28 3.5.1 0-1變數決定塔板限制式(Binary representation of column trays)............................28 3.5.2 質量及能量平衡限制式(Mass and Energy Balance Constraints)...............................31 3.5.3 邏輯限制式(Logical Constraints)............44 3.5.4 莫爾分率限制式(Mole Fraction Constrains)...46 3.5.5 熱力學關係式(Thermodynamics)...............46 3.5.6 塔結構限制式(Column structure constraints).47 3.5.7 年總成本計算式(Total annual costs calculation)...............................50 3.6 目標函數(Objective Functions)..................50 4 模式之實例模擬暨模擬結果分析與討論.................53 4.1 最適化軟體.....................................53 4.2 分離系統與基本性質之介紹.......................54 4.3 例一最適化結果討論.............................54 4.3.1 目標函數一:最小化蒸氣量....................54 4.3.2 目標函數二:最小化年總成本..................65 4.3.3 最小化能源使用與最小化年總成本之成本比較...72 4.4 不同進料下Underwood's method與所提方法之蒸氣量 討論...........................................76 4.5 不同進料下傳統結構與熱整合結構最小化年總成本之 成本比較.......................................81 5 結論與未來展望 87 5.1 結論...........................................87 5.2 未來展望.......................................88 附錄A................................................89 參考文獻.............................................93 作者簡歷.............................................95 | |
| dc.language.iso | zh-TW | |
| dc.subject | 多效蒸餾塔 | zh_TW |
| dc.subject | Multi-effect | en |
| dc.subject | Distillation | en |
| dc.title | 以數學規畫法作多效蒸餾系統設計 | zh_TW |
| dc.title | Superstructure-based MINLP Formualtion for Design of Multi-effect Distillation Arrangements | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 余政靖,黃孝平,鄭智成,王子奇 | |
| dc.subject.keyword | 多效蒸餾塔, | zh_TW |
| dc.subject.keyword | Multi-effect,Distillation, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
