請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37065
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李雅榮(Ya- Jung Lee) | |
dc.contributor.author | Jer-Yuan Liou | en |
dc.contributor.author | 劉哲元 | zh_TW |
dc.date.accessioned | 2021-06-13T15:18:38Z | - |
dc.date.available | 2008-08-05 | |
dc.date.copyright | 2008-08-05 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-23 | |
dc.identifier.citation | [1] Burton, T., D. Sharpe, N. Jenkins and E. Bossanyi, “Wind Energy Handbook”, John Wiley & Sons Ltd, 2001.
[2] Garrad Hassan & Partners, Tractebel Energy Engineering, Riso National Laboratory, Kvaerner Oil & Gas, Energi & Miljoe Undersoegelser, “Concerted Action on Offshore Wind Energy in Europe”, Duwind 2001.006, December 2001. [3] Garrad Hassan and partners,” Sea Wind Europe”, Greenpeace, 2004. [4] Germanischer Lloyd, “Rules and Guidelines IV-Industrial Services-Guideline for the Certification of Wind Turbines”, 2003. [5] Christoph W. Kensche , “Fatigue of composites for wind turbines”,International Journal of Fatigue 28, April 2006, pp.1363-1374. [6] John F. Mandell, Daniel D. Samborsky, Lei Wang,“New Fatigue Data for Wind Turbine Blade Materials”, Journal of Solar Energy Engineering Vol.125, November 2003, pp.506-514. [7] J Va’zquez, A Silvera, F Arias and E Soria, “Fatigue properties of a glass-fibre-reinforced polyester material used in wind turbine blades”, Journal of strain analysis Vol.33, April 1998, pp.183-193. [8] Daniel D. Samborsky and John F. Mandell, “Fatigue Resistant Fiberglass Laminates For Wind Turbine Blades”, published for Wind Energy, 1996, pp.46-51. [9] John F. Mandell, Robert M. Reed, Daniel D. Samborsky, “Fatigue of Fiberglass Wind Turbine Blade Materials” ,SAND92-7005, August 1992. [10] “ASTM Digital Library”American Society For Testing and Materials. [11] Herbert J. Sutherland, John F. Mandell, “Effect of Mean Stress on the Damage of Wind Turbine Blades”, Journal of Solar Energy Engineering Vol.126, November 2004, pp.1041-1049. [12] Mandell, J. F., and Samborsky, D. D., “DOE/MSU Composite Material Fatigue Database: Test Methods, Materials, and Analysis”, SAND97-3002, Sandia National Laboratories, Albuquerque, 1997. [13] Mandell, J. F., Samborsky, D. D., and Cairns, D. S., “Fatigue of Composite Material and Substructures for Turbine Blades”, SAND2002-077, Sandia National Laboratories, Albuquerque, 2002. [14] Mahmood M. Shokrieh, Roham Rafiee,“Simulation of fatigue failure in a full composite wind turbine blade”, Composite Structures Vol.74, 2006, pp332-342. [15] Griffin, D. A., “Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades”, SAND2002-1879, July 2002. [16] http://www.vectorply.com/reinforcemt/mechlam.aspx. [17] http://www.aoc-resins.com/web/site/ [18] Seemann, W. H., “Plastic transfer molding apparatus for the production of fiber reinforced plastic structures”, U.S. Patent Office, Pat No. 5052906, 1991. [19] 吳金翰, “船用FRP SCRIMP技術與數值模擬解析”,國立台灣大學碩士論文,2003年6月。 [20] Locke, J. and U. Valencia, “Design Studies For Twist-Coupled Wind Turbine Blades”, SAND2004-0522, June 2004. [21] International Standard Organization, “ISO 14129: Fibre-reinforced plastic composites-Determination of the in-plane shear stress/shear strain response, including the in-plane shear modulus and strength, by the ±45° tension test method”, 1997. [22] Tsai S. W.,and Wu, E. M.,“A General Theory of Strength for Anisotropic Materials”, Journal of Composite Material,Vol.5,1971, pp58-80. [23] 李雅榮編撰,“複合材料力學”,國立台灣大學工程科學與海洋工程所教材,December 2007. [24] 經濟部95年度科技專案研發成果, “複合材料積層板機械特性質探討”, USDDC, 2004.12. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37065 | - |
dc.description.abstract | 本文就現行GFRP風力發電機葉片所使用之原材料的力學特性作探討,首先藉由所蒐集取得之資料,探討葉片各部位使用之材料種類(包括纖維種類、樹脂種類與積層種類),並經由相關材料試驗法規進行靜態(包含拉伸、壓縮與剪切試驗)與動態(疲勞試驗)材料試驗,以建立風力發電機FRP葉片材料特性之資料庫,掌握材料特性並作為日後研究與結構計算之基礎,再藉由實驗結果探討不同纖維編織之破壞模式與比較不同樹脂對強度與剛性之影響。
本文亦以理論分析推導編織多層纖維之材料性質,即利用複合法則根據單軸向纖維之剛性推算雙軸向纖維與三軸向纖維之剛性,再比對實驗結果來驗證,且利用ABAQUS有限元素分析軟體探討GFRP積層板之剪切強度。 | zh_TW |
dc.description.abstract | This study mainly focuses on the mechanical characteristic of glass fiber reinforced plastics (GFRP) used for wind turbine blades. According to the past investigation, we discuss the characteristic of the material, which is varying with the category of fiber and resin and the stacking sequence, applied on the different part of the blades. We processed the static test, including the tension, compression, and shear test, and dynamic test, mainly fatigue test, based on the standard of material test. Then the characteristic of GFRP is provided cleanly and the database is established to make the foundation of the study and numerical calculation. Meanwhile, we can discuss the failure form with the different stacking sequence and influence on the strength and stiffness of the different resin.
This paper also applies the theoretical analysis to conduct the mechanical characteristic of material with the different stacking sequence. That is, we substitute the stiffness of the single axial laminates to determine the stiffness of the biaxial and triaxial laminates based on the compound rule for the composite material and then compare the results with the experimental results. Finally we use the finite element software, ABAQUS, to discuss the shear strength analysis of the GFRP laminated plate. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:18:38Z (GMT). No. of bitstreams: 1 ntu-97-R95525036-1.pdf: 2494882 bytes, checksum: 993adbbf644e4f5b03ccd22fd88cf565 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目錄
誌謝...I 摘要...II 目錄...IV 圖目錄...VII 表目錄...XII 第一章 序論...1 1.1 研究動機...1 1.2 文獻回顧...2 1.3 論文架構...4 第二章 靜態材料試驗...5 2.1 風力發電機FRP葉片材料概述...5 2.1.1 強化材(reinforcement)-纖維...5 2.1.2 基材(matrix)-樹脂...7 2.1.3 成型方法...8 2.1.4 葉片積層材料分佈...10 2.2 材料選定與實驗裝置...11 2.2.1 材料選定...11 2.2.2 實驗裝置...12 2.3 拉伸試驗...13 2.3.1試片規格...13 2.3.2 拉伸試驗之計算方法...14 2.3.3 試片纖維配向角示意圖...16 2.3.4 拉伸試驗之數據...17 2.3.5 拉伸破壞模式探討...41 2.3.6 拉伸試驗數據討論...44 2.4 壓縮試驗...48 2.4.1試片規格...48 2.4.2 壓縮實驗之計算方法...48 2.4.3 壓縮實驗之數據...49 2.4.4 壓縮破壞模式探討...59 2.4.5 壓縮試驗數據討論...61 2.5 剪切試驗...63 2.5.1 試片規格...63 2.5.2 剪切實驗之計算方法...63 2.5.3 剪切實驗之數據...65 2.5.4 剪切破壞模式探討...68 2.5.5 剪切試驗數據討論...69 第三章 靜態材料試驗之數值分析...70 3.1 材料剛性之預估...70 3.1.1單層板(Lamina)之應力及應變...70 3.1.2具任意配向角層(Ply)之應力應變關係...72 3.1.3積層板剛性之預估...73 3.2 ABAQUS對剪切試驗之驗證...82 3.2.1 面內剪切負載...82 3.2.2 破壞法則之選取...84 3.2.3 剪切試驗之有限元素分析...86 第四章 動態材料試驗...92 4.1 材料選定與實驗方法...92 4.1.1 材料選定...92 4.1.2 實驗方法...92 4.2 疲勞試驗...93 4.2.1 試片規格...93 4.2.2 疲勞試驗之計算方法...93 4.2.3 疲勞實驗之數據...96 4.2.4 疲勞破壞模式探討...105 4.2.5 疲勞試驗數據討論...108 第五章 結論與建議...109 5.1 結論...109 5.1 未來研究之建議...110 參考文獻...111 圖目錄 圖2-1 切股毡(Mat /strand chopped mats)...6 圖2-2 紗束布(Roving)...6 圖2-3 由左而右依序為單軸向纖維(如L900)、雙軸向纖維(如DB800)及三軸向纖維(如DBL1169)...6 圖2-4 手積法示意圖...9 圖2-5 真空樹脂轉注成型法...9 圖2-6 葉片斷面之基本結構分區...10 圖2-7 纖維配向角θ之座標系統...11 圖2-8 (a)MTS-810材料試驗系統...12 圖2-8 (b)試驗裝置流程..12 圖2-9 (a)雙軸應變規...13 圖2-9 (b)Strain Amplifier...13 圖2-10 拉伸試驗A型試片...13 圖2-11 拉伸試驗B型試片...14 圖2-12 拉伸試驗操作情形...15 圖2-13 應變規與應變計...15 圖2-14 DB800縱向拉伸試片纖維配向角示意圖...16 圖2-15 L900縱向拉伸試片纖維配向角示意圖...16 圖2-16 L900橫向拉伸試片纖維配向角示意圖...16 圖2-17 DBL1169縱向拉伸試片纖維配向角示意圖...16 圖2-18 DBL1169橫向拉伸試片纖維配向角示意圖...16 圖2-19 DB800 Epoxy 縱向拉伸試驗負荷-位移...17 圖2-20 DB800 Epoxy 縱向拉伸試驗應力-應變...18 圖2-21 DB800 Epoxy 縱向拉伸試驗橫向應變-軸向應變...18 圖2-22 DB800 Vinylester 縱向拉伸試驗負荷-位移...19 圖2-23 DB800 Vinylester 縱向拉伸試驗應力-應變...20 圖2-24 DB800 Vinylester 縱向拉伸試驗橫向應變-軸向應變...20 圖2-25 DB800 Polyester 縱向拉伸試驗負荷-位移...21 圖2-26 DB800 Polyester 縱向拉伸試驗應力-應變...22 圖2-27 DB800 Polyester 縱向拉伸試驗橫向應變-軸向應變...22 圖2-28 L900 Epoxy 縱向拉伸試驗負荷-位移...23 圖2-29 L900 Epoxy 縱向拉伸試驗應力-應變...24 圖2-30 L900 Epoxy 縱向拉伸試驗橫向應變-軸向應變...24 圖2-31 L900 Vinylester 縱向拉伸試驗負荷-位移...25 圖2-32 L900 Vinylester 縱向拉伸試驗應力-應變...26 圖2-33 L900 Vinylester 縱向拉伸試驗橫向應變-軸向應變...26 圖2-34 L900 Polyester 縱向拉伸試驗負荷-位移...27 圖2-35 L900 Polyester 縱向拉伸試驗應力-應變...28 圖2-36 L900 Polyester 縱向拉伸試驗橫向應變-軸向應變...28 圖2-37 L900 Epoxy橫向拉伸試驗負荷-位移...29 圖2-38 L900 Epoxy橫向拉伸試驗應力-應變...29 圖2-39 L900 Vinylester橫向拉伸試驗負荷-位移...30 圖2.40 L900 Vinylester橫向拉伸試驗應力-應變...30 圖2-41 L900 Polyester橫向拉伸試驗負荷-位移...31 圖2-42 L900 Polyester橫向拉伸試驗應力-應變...31 圖2-43 DBL1169 Epoxy 縱向拉伸試驗負荷-位移...32 圖2-44 DBL1169 Epoxy 縱向拉伸試驗應力-應變...33 圖2-45 DBL1169 Epoxy 縱向拉伸試驗橫向應變-軸向應變...33 圖2-46 DBL1169 Vinylester 縱向拉伸試驗負荷-位移...34 圖2-47 DBL1169 Vinylester 縱向拉伸試驗應力-應變...35 圖2-48 DBL1169 Vinylester 縱向拉伸試驗橫向應變-軸向應變..35 圖2-49 DBL1169 Polyester 縱向拉伸試驗負荷-位移...36 圖2-50 DBL1169 Polyester 縱向拉伸試驗應力-應變...37 圖2-51 DBL1169 Polyester 縱向拉伸試驗橫向應變-軸向應變...37 圖2-52 DBL1169 Epoxy橫向拉伸試驗負荷-位移...38 圖2-53 DBL1169 Epoxy橫向拉伸試驗應力-應變...38 圖2-54 DBL1169 Vinylester橫向拉伸試驗負荷-位移...39 圖2-55 DBL1169 Vinylester橫向拉伸試驗應力-應變...39 圖2-56 DBL1169 Polyester橫向拉伸試驗負荷-位移...40 圖2-57 DBL1169 Polyester橫向拉伸試驗應力-應變...40 圖2-58 L900縱向拉伸試片破壞圖(左:正面 / 右:側面)...41 圖2-59 DBL1169縱向拉伸試片破壞圖(左:正面 / 右:側面)...41 圖2-60 DB800縱向拉伸試片破壞圖(左:正面 / 右:側面)...42 圖2-61 L900橫向拉伸試片破壞圖...43 圖2-62 DBL1169橫向拉伸試片破壞圖(左:正面 / 右:背面)...43 圖2-63 DBL1169 聚酯樹脂破壞圖(左:正面/右:反面)...45 圖2-64 DBL1169 乙烯酯樹脂破壞圖(左:正面/右:反面)...45 圖2-65 壓縮試驗試片...48 圖2-66 壓縮試驗之夾具...48 圖2-67 DB800 Vinylester壓縮試驗負荷-位移...49 圖2-68 壓縮試驗之情形...49 圖2-69 DB800 Polyester壓縮試驗負荷-位移...50 圖2-70 L900 Vinylester縱向壓縮試驗負荷-位移...51 圖2-71 L900 Polyester縱向壓縮試驗負荷-位移...52 圖2-72 L900 Vinylester橫向壓縮試驗負荷-位移...53 圖2-73 L900 Polyester橫向壓縮試驗負荷-位移...54 圖2-74 DBL1169 Vinylester縱向壓縮試驗負荷-位移...55 圖2-75 DBL1169 Polyester縱向壓縮試驗負荷-位移...56 圖2-76 DBL1169 Vinylester橫向壓縮試驗負荷-位移...57 圖2-77 DBL1169 Polyester橫向壓縮試驗負荷-位移...58 圖2-78 DBL1169壓縮試片破壞圖...59 圖2-79 DB800壓縮試片破壞圖(左:正面/右:側面)...59 圖2-80 L900橫向壓縮試片破壞圖(左:正面/右:側面)...60 圖2-81 DBL1169橫向壓縮試片破壞圖(左:正面/中:背面/右:側面)...60 圖2-82 剪切試驗試片...63 圖2-83 L900 Epoxy面內剪切試驗負荷-位移...65 圖2-84 L900 Epoxy面內剪切試驗剪切應力-剪應變...65 圖2-85 L900 Vinylester面內剪切試驗負荷-位移...66 圖2-86 L900 Vinylester面內剪切試驗剪切應力-剪應變...66 圖2-87 L900 Polyester面內剪切試驗負荷-位移...67 圖2-88 L900 Polyester面內剪切試驗剪切應力-剪應變...67 圖2-89 L900面內剪切試片破壞圖(左:正面/右:側面)...68 圖3-1 平面應力(Plane Stress)負荷...70 圖3-2 一方向纖維強化複合材料...71 圖3-3 纖維配向角θ之座標系統...72 圖3-4 DB800 Polyester拉伸試驗應力-應變與剛性預估之比較...75 圖3-5 DBL1169 Polyester拉伸試驗應力-應變與剛性預估之比較.77 圖3-6 DB800 Polyester拉伸試驗應力-應變與修正後剛性預估之比較...79 圖3-7 DBL1169 Polyester拉伸試驗應力-應變與修正後剛性預估之比較...80 圖3-8 材料體受純剪應力...82 圖3-9 將純剪力分解為拉伸應力與壓縮應力後旋轉45°...83 圖3-10 面內剪切試驗試片施加負...84 圖3-11 剪切試片模型...87 圖3-12 正方形試片模型...87 圖3-13 X-Y為ABAQUS之座標,1-垂直纖維主軸方向,2-平行纖維主軸方向...88 圖3-14 正方形試片受純剪切負載...89 圖3-15 剪切試片受拉伸負載...90 圖4-1 MTS-458.20 AC Controller...92 圖4-2 疲勞試驗A型試片(DBL1169,DB800)...93 圖4-3 疲勞試驗B型試片(L900)...93 圖4-4 疲勞負荷與時間關係圖...94 圖4-5 DB800之S-N曲線圖...98 圖4-6 DBL1169之S-N曲線圖...101 圖4-7 L900之S-N曲線圖...104 圖4-8 L900疲勞試片破壞圖...105 圖4-9 DBL1169疲勞試片破壞圖...106 圖4-10 DB800疲勞試片破壞圖...107 圖4-11 DB800 Polyester 拉伸試驗應力-應變...108 表目錄 表1-1 主要葉片製造商與採用材料...3 表2-1 三種常用熱固性樹脂之優缺點比較...8 表2-2 玻璃纖維材料之基本性質...11 表2-3 DB800 Epoxy縱向拉伸試驗...17 表2-4 DB800 Vinylester縱向拉伸試驗...19 表2-5 DB800 Polyester縱向拉伸試驗...21 表2-6 L900 Epoxy縱向拉伸試驗...23 表2-7 L900 Vinylester縱向拉伸試驗...25 表2-8 L900 Polyester縱向拉伸試驗...27 表2-9 L900 Epoxy橫向拉伸試驗...29 表2-10 L900 Vinylester橫向拉伸試驗...30 表2-11 L900 Polyester橫向拉伸試驗...31 表2-12 DBL1169 Epoxy縱向拉伸試驗...32 表2-13 DBL1169 Vinylester縱向拉伸試驗...34 表2-14 DBL1169 Polyester縱向拉伸試驗...36 表2-15 DBL1169 Epoxy橫向拉伸試驗...38 表2-16 DBL1169 Vinylester橫向拉伸試驗...39 表2-17 DBL1169 Polyester橫向拉伸試驗...40 表2-18 縱向拉伸試驗數據表...44 表2-19 縱向拉伸試驗數據之變異係數...44 表2-20 積層中加入切股毡之縱向拉伸試驗數據表...44 表2-21 橫向拉伸試驗數據表...46 表2-22 橫向拉伸試驗數據之變異係數...46 表2-23 純樹脂拉伸試驗數據...46 表2-24 DB800 Vinylester壓縮試驗...49 表2-25 DB800 Polyester壓縮試驗...50 表2-26 L900 Vinylester縱向壓縮試驗...51 表2-27 L900 Polyester縱向壓縮試驗...52 表2-28 L900 Vinylester橫向壓縮試驗...53 表2-29 L900 Polyester橫向壓縮試驗...54 表2-30 DBL1169 Vinylester縱向壓縮試驗...55 表2-31 DBL1169 Polyester縱向壓縮試驗...56 表2-32 DBL1169 Vinylester橫向壓縮試驗...57 表2-33 DBL1169 Polyester橫向壓縮試驗...58 表2-34 軸向壓縮試驗數據表...61 表2-35 軸向壓縮試驗數據之變異係數...61 表2-36 橫向壓縮試驗數據表...62 表2-37 橫向壓縮試驗數據之變異係數...62 表2-38 L900 Epoxy面內剪切試驗...65 表2-39 L900 Vinylester面內剪切試驗...66 表2-40 L900 Polyester面內剪切試驗...67 表2-41 面內剪切試驗數據表...69 表2-42 面內剪切試驗數據之變異係數...69 表3-1 L900 Polyester之工學彈性係數...73 表3-2 L900 Polyester之面內彈性係數...73 表3-3 纖維布含各配向角之比例...74 表3-4 Polyester樹脂製成試片之纖維含有率...78 表3-5根據纖維含有率修正後之彈性係數...79 表3-6 L900 Vinylester之材料參數...86 表3-7 Composite Layup...86 表3-8 Tsai-Wu破壞法則使用之強度係數...88 表3-9 正方形試片受純剪切負載發生破壞時之應力...89 表3-10 剪切試片受拉伸負載發生破壞時之應力...90 表3-11 發生破壞時之最大剪應力為實驗所得之剪切強度時之應力...91 表4-1 DB800 Vinylester拉伸疲勞試驗...96 表4-2 DB800 Polyester拉伸疲勞試驗...97 表4-3 DBL1169 Vinylester拉伸疲勞試驗...99 表4-4 DBL1169 Polyester拉伸疲勞試驗...100 表4-5 L900 Vinylester拉伸疲勞試驗...102 表4-6 L900 Polyester拉伸疲勞試驗...103 表5-1 葉片使用之相關材料綜合比較表...109 | |
dc.language.iso | zh-TW | |
dc.title | FRP風力機葉片材料強度之探討 | zh_TW |
dc.title | Study on Material Strength of FRP Wind Turbine Blades | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林輝政(Huei-Jeng Lin),梁卓中,吳重雄,鍾承憲 | |
dc.subject.keyword | 風力機葉片,纖維強化塑膠,材料試驗,玻璃纖維, | zh_TW |
dc.subject.keyword | wind turbine blade,FRP,material test,glass fiber, | en |
dc.relation.page | 111 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-25 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 2.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。