Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37034
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉力瑜(Li-yu Liu)
dc.contributor.authorTzu-hao Maen
dc.contributor.author馬梓豪zh_TW
dc.date.accessioned2021-06-13T15:18:10Z-
dc.date.available2008-07-26
dc.date.copyright2008-07-26
dc.date.issued2008
dc.date.submitted2008-07-25
dc.identifier.citationBenjamini, Yoav and Yosef Hochberg (1995), “Controlling the False Discovery Rate:
A Practical and Powerful Approach to Multiple Testing”, Journal of the Royal
Statistical Society. Series B (Methodological), 57(1), 289–300.
URL: http://www.jstor.org/stable/2346101
Benjamini, Yoav and Daniel Yekutieli (2005), “Quantitative Trait Loci Analysis
Using the False Discovery Rate”, Genetics, 171(2), 783–790.
URL: http://dx.doi.org/10.1534/genetics.104.036699
Casella, George and Roger L. Berger (2002), Statistical Inference, Duxbury, 2nd
edition.
Domingos, Pedro and Michael Pazzani (1997), “On the optimality of the simple
Bayesian classifier under zero-one loss”, Machine Learning, 29, 103–137.
Fisher, R. A. (1918), “The Correlation Between Relatives on the Supposition of
Mendelian Inheritance”, Philosophical Transactions of the Royal Society of Edin-
burgh, 52, 399–433.
Fisher, R.A. (1936), “The Use of Multiple Measurements in Taxonomic Problems.”,
Annals of Eugenics, 7, 179–188.
Garczarek, Ursula Maria (2002), “Classification rules in standardized partition
spaces”, University of Dortmund.
Golub, T. R., D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,
H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and
E. S. Lander (1999), “Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring.”, Science, 286(5439), 531–537.
URL: http://view.ncbi.nlm.nih.gov/pubmed/10521349
Hsing, Tailen, Li-Yu Liu, Marcel Brun, and Edward R. Dougherty (2005), “The coefficient
of intrinsic dependence (feature selection using el CID)”, Pattern recog-
nition ISSN 0031-3203 CODEN PTNRA8, 38, 623–636.
URL: citeseer.ist.psu.edu/hsing05coefficient.html
Jain, A. and D. Zongker (1997), “Feature selection: evaluation, application, and
small sample performance”, Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 19(2), 153–158.
Kohavi, Ron and George H. John (1997), “Wrappers for Feature Subset Selection”,
Artificial Intelligence, 97(1-2), 273–324.
URL: http://citeseer.ist.psu.edu/13663.html
Kruskal, William H. and W. Allen Wallis (1952), “Use of ranks in one-criterion
variance analysis.”, Journal of the American Statistical Association, 47(260), 583–
621.
Levene, H. (1960), “Contributions to Probability and Statistics: Essays in Honor
of Harold Hotelling”, Stanford University Press, Stanford, CA, 278–292, i. Olkin,
et. al., eds.
Liu, Daisy Li-yu (2005), Coeffificent of Intrinsic Dependence: A New Measure of
Association, Texas A&M University.
Mootha, V. K., C. M. Lindgren, K. F. Eriksson, A. Subramanian, S. Sihag, J. Lehar,
P. Puigserver, E. Carlsson, M. Ridderstr°ale, E. Laurila, N. Houstis, M. J. Daly,
N. Patterson, J. P. Mesirov, T. R. Golub, P. Tamayo, B. Spiegelman, E. S. Lander,
J. N. Hirschhorn, D. Altshuler, and L. C. Groop (2003), “PGC-1alpha-responsive
genes involved in oxidative phosphorylation are coordinately downregulated in
human diabetes.”, Nat Genet, 34(3), 267–273.
URL: http://dx.doi.org/10.1038/ng1180
Reunanen, Juha (2003), “Overfitting in making comparisons between variable selection
methods”, J. Mach. Learn. Res., 3, 1371–1382.
URL: http://portal.acm.org/citation.cfm?id=944978
Ripley, B. D. (1996), Pattern Recognition and Neural Networks, Cambridge.
Rish, Irina. (2001), “An empirical study of the naive Bayes classifier”, IJCAI 2001
Workshop on Empirical Methods in Artificial Intelligence.
Schena, Mark, Dari Shalon, RonaldW. Davis, and Patrick O. Brown (1995), “Quantitative
Monitoring of Gene Expression Patterns with a Complementary DNA
Microarray”, Science, 270(5235), 467–470.
URL: http://www.sciencemag.org/cgi/content/full/270/5235/467
Scholkopf, Bernhard and Alexander J. Smola (2001), Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond, Cambridge, MA,
USA: MIT Press.
Sima, Chao, Sanju Attoor, Ulisses Brag-Neto, James Lowey, Edward Suh, and Edward
R. Dougherty (2005), “Feature selection: evaluation, application, and small
sample performance”, Pattern Recognition, 38(12), 2472–2482.
Singh, Dinesh, Phillip G. Febbo, Kenneth Ross, Donald G. Jackson, Judith Manola,
Christine Ladd, Pablo Tamayo, Andrew A. Renshaw, Anthony V. D’Amico,
Jerome P. Richie, Eric S. Lander, Massimo Loda, Philip W. Kantoff, Todd R.
Golub, and William R. Sellers (2002), “Gene expression correlates of clinical
prostate cancer behavior”, Cancer Cell, 1(2), 203–209.
URL: http://dx.doi.org/10.1016/S1535-6108(02)00030-2
Snedecor, George W. and William G. Cochran (1989), Statistical Methods, Iowa
State University Press, 8th edition.
Spellman, P. T., G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen,
P. O. Brown, D. Botstein, and B. Futcher (1998), “Comprehensive identification
of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray
hybridization.”, Mol Biol Cell, 9(12), 3273–3297.
URL: http://www.molbiolcell.org/cgi/content/abstract/9/12/3273
van’t Veer, L. J., H. Dai, M. J. van de Vijver, Y. D. He, A. A. Hart, M. Mao, H. L.
Peterse, K. van der Kooy, M. J. Marton, A. T. Witteveen, G. J. Schreiber, R. M.
Kerkhoven, C. Roberts, P. S. Linsley, R. Bernards, and S. H. Friend (2002),
“Gene expression profiling predicts clinical outcome of breast cancer.”, Nature,
415(6871), 530–536.
URL: http://dx.doi.org/10.1038/415530a
Venables, W. N. and B. D. Ripley (2002), Modern Applied Statistics with S, Springer,
4th edition.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37034-
dc.description.abstract就針對「辨識生物晶片資料的基因標誌」這樣的主題而言,
統計學家曾提出許多方法,以求得更為精確且具有代表意義的基因標誌。根據前人研究發現,尋找出具有代表意義的基因才是建立正確性高分類法的關鍵。因此,此篇研究我們將提出利用本質相關係數辨識基因標誌的方法。從模擬的結果可以發現,該係數在不同的分配下,甚至針對不同種類的相關性都有這相當好的表現情形。
我們亦針對一份乳癌病人之微陣列資料進行分析。在此分析中,我們透過四項數值的比較,發現利用該係數所檢測得到的基因,明顯地比利用其他四種現有的統計方法所篩選得到的基因,更具有準確性與估計能力。
總和來說,從我們的研究結果可以得知,利用該係數以及其相關的變化型態所得到的基因標誌,無論是在針對相關性的辨識,或著找出的基因在後續分類法的表現情形,都具有相當程度的準確性與好的估計能力。
zh_TW
dc.description.abstractFor the topic of 'identification of gene signatures in microarray data,' statisticians have proposed lots of methods to accurately select the genes which are most representative. According to the results of previous researches, feature selection is essential in accurately classifying objects into classes. Therefore, we propose to use the coefficient of intrinsic dependence (CID) in identifying signatures. From the simulation results, we find that CID has a proper and stable detecting power in location or scale difference and under the different assumptions of distribution.
The CID is also exercised on a breast cancer microarray data. We find that the selected genes by subCID, a expansion of CID, are thought more accurate and powerful in class estimation than the conventional statistics.
According to the results of our study, there is convincing evidence that CID and subCID are more accurate and powerful in feature selection, and the selected genes are well-performed in classification studies, such as class estimation.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:18:10Z (GMT). No. of bitstreams: 1
ntu-97-R95621201-1.pdf: 592597 bytes, checksum: d0fb407ed28f0ea3377c6a276eaadd0f (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsTABLE OF CONTENTS
Page
TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
CHAPTER
I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1
II THE COEFFICIENT OF INTRINSIC DEPENDENCE . . . . . 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Definition of CID . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Definition of subCID . . . . . . . . . . . . . . . . . . . . . 6
2.4 The properties of CID and subCID . . . . . . . . . . . . . 7
2.5 Hypothesis test of dependence . . . . . . . . . . . . . . . . 8
III COMPARISON OF FEATURE SELECTION STATISTICS . . 11
3.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Definition of test statistics . . . . . . . . . . . . . . . . . . 12
3.3 Definition of power . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Parameter setting . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . 14
IV BREAST CANCER DATA ANALYSIS . . . . . . . . . . . . . . 18
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Description of the data set . . . . . . . . . . . . . . . . . . 18
4.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . 22
V CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Article review . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Future study . . . . . . . . . . . . . . . . . . . . . . . . . 34
REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
dc.language.isoen
dc.title利用本質相關係數辨識生物晶片資料的基因標誌zh_TW
dc.titleIdentification of the Gene Signatures in Microarray Data by CIDen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee彭雲明,陳倩瑜
dc.subject.keyword本質相關係數,生物晶片,辨識,基因標誌,分類法,zh_TW
dc.subject.keywordCID,microarray,identification,gene signature,classification,en
dc.relation.page42
dc.rights.note有償授權
dc.date.accepted2008-07-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
578.71 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved