請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37030
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴飛羆(Feipei Lai) | |
dc.contributor.author | Hsiang-Jen Tan | en |
dc.contributor.author | 譚翔仁 | zh_TW |
dc.date.accessioned | 2021-06-13T15:18:07Z | - |
dc.date.available | 2009-08-05 | |
dc.date.copyright | 2008-08-05 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-23 | |
dc.identifier.citation | [1] 'AMBATM Specification Revision 2.0,' May 13, 1999.
[2] L. Benini, L. Benini, and G. De Micheli, 'Networks on chips: a new SoC paradigm,' Computer, vol. 35, pp. 70-78, 2002. [3] S. Kumar, A. Jantsch, J. P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja, and A. Hemani, 'A network on chip architecture and design methodology,' in IEEE Computer Society Annual Symposium on VLSI 2002, pp. 105-112. [4] J. D. William and T. Brian, 'Route packets, not wires: on-chip interconnection networks,' in Proceedings of the 38th conference on Design automation Las Vegas, Nevada, United States: ACM, 2001. [5] W.J. Dally and C.L. Seitz, 'The Torus Routing Chip, ' Technical Report 5208:TR: 86, Computer Science Dept., California Inst. Of Technology, pp. 1-19, 1986. [6] F. Karim, F. Karim, A. Nguyen, and S. Dey, 'An interconnect architecture for networking systems on chips,' Micro, IEEE, vol. 22, pp. 36-45, 2002. [7] J. Duato, S. Yalamanchili, L. Ni, 'Interconnection Networks, an Engineering Approach,' IEEE Computer Society, 1997. [8] L. Ming, Z. Qing-An, and J. Wen-Ben, 'DyXY - a proximity congestion-aware deadlock-free dynamic routing method for network on chip,' in Design Automation Conference, 2006 43rd ACM/IEEE, 2006, pp. 849-852. [9] H. Jingcao and R. Marculescu, 'DyAD - smart routing for networks-on-chip,' in Design Automation Conference, Proceedings. 41st, 2004, pp. 260-263. [10] C. Ge-Ming, 'The odd-even turn model for adaptive routing,' Parallel and Distributed Systems, IEEE Transactions on, vol. 11, pp. 729-738, 2000. [11] C. J. Glass and L. M. Ni, 'The Turn Model for Adaptive Routing,' in Computer Architecture, Proceedings., The 19th Annual International Symposium on, 1992, pp. 278-287. [12] G. Pierre and G. Alain, 'A generic architecture for on-chip packet-switched interconnections,' in Proceedings of the conference on Design, automation and test in Europe Paris, France: ACM, 2000. [13] S. Kumar, R. Holsmark and A. Johansson, 'On connecting cores to packet switched on-chip networks: A case study with Microblaze Processor Cores,' http://hem.hj.se/~hori/index-filer/Dokument/DDECS_2004.pdf. [14] P. Bhojwani, P. Bhojwani, and R. Mahapatra, 'Interfacing cores with on-chip packet-switched networks Interfacing cores with on-chip packet-switched networks,' in VLSI Design, Proceedings. 16th International Conference on, 2003, pp. 382-387. [15] A. Scherrer, T. Risset and A. Fraboulet, 'Hardware Wrapper Classification and Requirements for On-Chip Interconnects, ' Signaux, Circuit et Systems Monastir, Tunisie, March 2004, pp.31-34. [16] P. Bhojwani and R. N. Mahapatra, 'Core network interface architecture and latency constrained on-chip communication,' in Quality Electronic Design, ISQED '06. 7th International Symposium on, 2006, p. 6 pp. [17] W. Chia-Ming, C. Hsin-Chou, and H. Ying-Ming, 'A Wrapper for Low-Power Error-Correcting Data Delivery in On-Chip Networks,' in Communications, Circuits and Systems Proceedings, International Conference on, 2006, pp. 2662-2666. [18] K. Daewook, K. Manho, and G. E. Sobelman, 'NIUGAP: low latency network interface architecture with Gray code for networks-on-chip,' in Circuits and Systems, ISCAS. Proceedings. IEEE International Symposium on, 2006, p. 4 pp. [19] S. Kundu, S. Kundu, and S. Chattopadhyay, 'Interfacing Cores and Routers in Network-on-Chip Using GALS,' in Integrated Circuits, ISIC '07. International Symposium on, 2007, pp. 154-157. [20] J.D. Wang, 'Low Power Mapping of Cores onto Hybrid NoC Architecture,' M.S. thesis, Department of Computer Science and Information Engineering, National Taiwan University, Taiwan, R.O.C., 2007. [21] R. P. Dick, D. L. Rhodes, and W. Wolf, 'TGFF: task graphs for free,' in Hardware/Software Codesign, (CODES/CASHE '98) Proceedings of the Sixth International Workshop on, 1998, pp. 97-101. [22] B. v. d. T. Erik and G. J. Egbert, 'Mapping of MPEG-4 decoding on a flexible architecture platform,' 2001, pp. 1-13. [23] P. P. Pande, C. Grecu, A. Ivanov, and R. Saleh, 'Design of a switch for network on chip applications,' in Circuits and Systems, ISCAS '03. Proceedings of the International Symposium on, 2003, pp. V-217-V-220 vol.5. [24] C. Young-Sin, C. Eun-Ju, and C. Kyoung-Rok, 'Modeling and analysis of the system bus latency on the SoC platform,' in Proceedings of the 2006 international workshop on System-level interconnect prediction Munich, Germany: ACM, 2006. [25] L. S. Peh and W. J. Dally, 'A delay model and speculative architecture for pipelined routers,' in High-Performance Computer Architecture, HPCA. The Seventh International Symposium on, 2001, pp. 255-266. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37030 | - |
dc.description.abstract | 在系統晶片(system-on-chip)設計中,矽智產之間皆利用匯流排互相溝通,隨著製程技術的進步,系統越來越複雜,單一晶片上的矽智產 (Intellectual Property)個數越來越多,使得匯流排在系統晶片發展上受到限制,在效能方面無法符合未來的系統需求;近幾年許多論文提出晶片網路(Networks-on-Chip)架構用以解決未來系統設計的挑戰,原因在於網路擁有較大的頻寬,規律性和模組化,改善了匯流排所面臨到的問題。晶片網路擁有二個主要的元件 : 路由器(router)和網路介面(Network Interface)。在利用較高的資料傳輸速率達到比匯流排更好的效能的前提之下,包括面積、功率消耗、傳輸延遲以及網路上的交通量將會是非常大的負擔,常會有壅塞或是熱點的形成,所以有大量論文和研究提出並改進這些問題;我們提出了一個新的架構:混合式晶片網路架構,基本上這是以晶片網路架構為基礎,但每個路由器所連接的並不是單一的處理單元,而是一個由AMBA匯流排連接多個矽智產的子系統,結合了兩種架構的優點,達到低延遲的架構。在這篇論文中,我們提出了一個簡單的網路介面設計不僅轉換匯流排訊號和網路封包資料而且幫助混合式晶片網路達到低延遲並解決熱點和經過節點數過多的問題。 | zh_TW |
dc.description.abstract | In system-on-chip design, each IP uses shared bus to communicate with the others. With the advance of the present time semiconductor technology and the increasing complexity of the system design, there are getting more and more IP cores. Because shared bus are nonscalable, they are limited in developing, and cannot reach the future system requirement in performance; In recent years, there are many papers proposing Networks-on-Chip (NoC) Architecture to overcome future systems design challenges, because of the higher bandwidth, regularity and modular in network. There are two major components: router and network interface in NoC architecture. Under satisfying the prerequisite of better performance than shared bus by using high data rate, including the traffic on network and the overhead of area, power and latency will be very large; it will often have congestion or hotspots in NoC. There are a lot of papers and researchers improving these problems; we address a new architecture: Hybrid Networks-on-Chip. It is based on NoC, and each switch connects a sub-system that is composed by linking many IPs on AMBA (Advanced Micro-controller Bus Architecture) rather than a single processing element. In this thesis, we propose a simple network interface design that not only transforms the AMBA signals and the packet data in network but helps hybrid architecture to achieve low latency and solve the problem of hop counts and hotspots. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:18:07Z (GMT). No. of bitstreams: 1 ntu-97-R95922092-1.pdf: 1920162 bytes, checksum: b76cf38c4c330c85baf08f5cd6ce0a0c (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii Chapter 1 Introduction 1 1.1 The purpose of low latency 1 1.2 System-on-Chip (SoC) 2 1.3 Networks-on-chip (NoC) 3 1.4 Hybrid Networks-on-Chip 5 1.5 Thesis Organization 7 Chapter 2 Background and Related work 8 2.1 AMBA bus system 8 2.1.1 Overview of AHB 9 2.1.2 Basic AHB transfer 10 2.1.3 Basic AHB signals 13 2.1.4 Arbitration 15 2.1.5 Address decoding 16 2.2 An On-chip Network 16 2.2.1 NoCs topology 17 2.2.2 Switching techniques 21 2.2.3 Routing algorithm 24 2.3 Related work 27 Chapter 3 Proposed data communication interface 29 3.1 Motivation and basic design concept 29 3.2 Hybrid interconnect 30 3.3 Proposed network interface 31 3.3.1 Packetization module 32 3.3.2 Depacketization module 34 3.4 Packet format 35 3.5 Switch architecture 36 Chapter 4 Experiment 38 4.1 Experimental environment 38 4.2 Experimental results 41 Chapter 5 Conclusion 46 REFERENCE 47 | |
dc.language.iso | en | |
dc.title | 匯流排與晶片系統之資料傳輸介面 | zh_TW |
dc.title | A Data Communication Interface Design for Bus and Networks-on-Chip Architecture | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李鴻璋(Hung-chang Lee),張延任(Yen-Jen Chang),林正偉(Jeng-Wei Lin),蔡坤霖(Kun-Lin Tsai) | |
dc.subject.keyword | 晶片網路,晶片系統,網路介面,匯流排,低延遲, | zh_TW |
dc.subject.keyword | Networks-on-Chip,System-on-Chip,Network Interface,Bus,low latency, | en |
dc.relation.page | 48 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-25 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。