請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37026完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠(Chih-Chung Yang) | |
| dc.contributor.author | Chi-Feng Huang | en |
| dc.contributor.author | 黃吉豐 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:18:03Z | - |
| dc.date.available | 2010-07-26 | |
| dc.date.copyright | 2008-07-26 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-24 | |
| dc.identifier.citation | [1.1] L. Siozade, J. Leymarie, P. Disseix, A. Vasson, M. Mihailovic, N. Grabdjean, M. Leroux,and J. Massies, “Modeling of thermally detected optical absorption and luminescence of (In.Ga)N/GaN heterostructures,” Solid State Comun. 115, 575 (2000).
[1.2] J. Wu, W. Walukiewicz, K.M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff “Small band gap bowing in InxGa1-xN,” Appl. Phys. Lett. 80, 4741 (2002). [1.3] J. Wu, W. Walukiewicz, K.M. Yu, J. W. Ager S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff “ Universal bandgap bowing in group-nitride allys,” Solid State Comun. 127, 411 (2003). [1.4] F. Yun, M. A. Reshchikov, L. He, T. King, H. Morkoc, S. W. Novak, and L. Wei “Energy band bowing parameter in AlxGa1-xN alloys,” J. Appl. Phys. 92, 4837 (2002). [1.5] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz ” Illumination with solid state lighting technology,” IEEE J. Select. Top. Quant. Electron. 8, 310 (2002). [1.6] S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light emitting diodes,” Appl. Phys. Lett., 62, 2390 (1993). [1.7] S. Nakamura, M. Senoh, N. Iwasa, and S.-I. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67, 1868 (1995). [1.8] J. Edmond et al., “High efficiency GaN-based LEDs and lasers on SiC,” J. Crystal Growth 272, 242 (2004). [1.9] http://lighting.sandia.gov/ [1.10] I. Niki, Y. Narukawa, D. Morita, S. Sonobe, T. Mitani, H. Tamaki, Y. Murazaki, M. Yamada, T. Mukai, ” White LEDs for solid state lighting,” Proc. of SPIE 5187, 1 (2004). [1.11] N. F. Gardner, H. C. Chui, E. I. Chen, M.R. Krames, J. W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4 × efficiency improvement in transparent-substrate (AlxGa1−x)0.5In0.5P light-emitting diodes with thin (2000 Å) active regions,” Appl. Phys. Lett. 74, 2230 (1999). [1.12] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collons, “High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50 external quantum efficiency,” Appl. Phys. Lett. 75, 2365 (1999). [1.13] Y.-L. Li, J. M. Shah, P.-H. Leung, Th. Gessmann, and E. F. Schubert, “Performance characteristics of white light sources consisting of multiple light-emitting diodes” Proc. of SPIE 5187, 178 (2004) [1.14] S. Muthu and F. J. P. Schuurmans, “Red, green, and blue LEDs for white light illumination,” IEEE J. Quant. Electron. 8, 333 (2002). [1.15] P. Deurenberg, C. Hoelen, J. van Meurs, J. Ansems, “Achieving color point stability in RGB multi-chip LED modules using various color control loops,“ Proc. of SPIE 5941, 59410C-1. [1.16] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A 64, 417 (1997). [1.17] S. Nakamura and G. Fasol, The Blue Laser Diode. Berlin, Germany: Springer, 1997, pp. 216–219. [1.18] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Select. Top. Quant. Electron. 8, 310 (2002). [1.19] K. Katayama, H. Matsubara, F. Nakanishi, T. Nakamura, H. Doi, A. Saegusa, T. Mitsui, T. Matsuoka, M. Irikura, T. Takebe, S. Nishine and T. Shirakawa, “ZnSe-based white LEDs,” J. Cryst. Growth 214/215, 1064 (2000). [1.20] H.Wenisch, M. Fehrer,M. Klude, K. Ohkawa and D. Hommel, “Internal photoluminescence in ZnSe homoepitaxy and application in blue–green–orange mixed-color light-emitting diodes,” J. Cryst. Growth 214/215, 1075 (2000). [1.21] X. Guo, J. W. Graff, and E. F. Schubert, “Photon recycling semiconductor light emitting diode,” in Proc. SPIE Photonics West, Light-Emitting Diodes: Research, Manufacturing and Applications, 60 (2000). [1.22] B. Damilano, N. Grandjean, C. Pernot, and J. Massies, “Monolithic white light emitting diodes based on InGaN/GaN multiple-quantum wells,” Jpn. J. Appl. Phys. 40, L 918 (2001). [1.23] M. Yamada, Y. Narukawa, and T. Mukai, “Phosphor free high-luminous-efficiency white light-emitting diodes composed of InGaN multi-quantum well,” Jpn. J. Appl. Phys. 41, L246 (2002). [1.24] JH Edgar, Properties of Group Ⅲ Nitrides, (Electronic Materials Information service (EMIS), London, 1994) [1.25] I. Ho, and G. B. Stringfellow, “ Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69, 2701 (1996). [1.26] B. Stringfellow and G. S. Chen, “Atomic ordering in III/V semiconductor alloys,” J. Vac. Sci. Technol. B 9, 2182 (1991) [1.27] Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “'S-shaped' temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370 (1998) [1.28] Y. Sun, Y. H. Cho, E. K. Suh, H. J. Lee, R. J. Choi, and Y. B. Hahn, “Carrier dynamics of high-efficiency green light emission in graded-indium-content InGaN/GaN quantum wells: An important role of effective carrier transfer,” Appl. Phys. Lett. 84, 49 (2004) [1.29] Y. C. Cheng, C. H. Tseng, C. Hsu, K. J. Ma, S. W. Feng, E. C. Lin, C. C. Yang, and J. I. Chyi, “Quantum dot formation with silicon doping in InGaN/GaN quantum well structures and its implications in radiative mechanisms,” Proc. SPIE Int. Soc. Opt. Eng. 4999, 518 (2003) [1.30] Y. H. Cho, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “Excitation energy-dependent optical characteristics of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 3181 (1998) [1.31] S. Yu. Karpov, “Suppression of phase separation in InGaN due to elastic strain,” J. Nitride Semicond. Res. 3, 16 (1998). [1.32] V. S. Speriosu and T. Vreeland, Jr., “X-ray rocking curve analysis of superlattices,” J. Appl. Phys. 56, 1591 (1984) [1.33] H. K. Cho, J. Y. Lee, C. S. Kim, and G. M. Yang, “Influence of strain relaxation on structural and optical characteristics of InGaN/GaN multiple quantum wells with high indium composition,” J. Appl. Phys. 91, 1166 (2002) [1.34] S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, “III--nitrides: Growth, characterization, and properties,” J. Appl. Phys. 87, 965 (2000) [1.35] S. Keller, B. P. Keller, D. Kapolnek, A. C. Abare, H. Masui, L. A. Coldren, U. K. Mishra, and S. P. DenBaars, “Growth and characterization of bulk InGaN films and quantum wells,” Appl. Phys. Lett. 68, 3147 (1996). [1.36] N. Yoshimoto, T. Matsuoka, T. Sasaki, and A. Katsui, “Photoluminescence of InGaN films grown at high temperature by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 59, 2251 (1991). [1.37] E. L. Piner, M. K. Behbehani, N. A. El-Masry, F. G. McIntosh, J. C. Roberts, K. S. Boutros, and S. M. Bedair, “Effect of hydrogen on the indium incorporation in InGaN epitaxial films,” Appl. Phys. Lett. 70, 461 (1997). [1.38] Y. Okamoto, K. Takahashi, H. Nakamura, Y. Okada, and M. Kawabe, “Effects of atomic hydrogen on the indium incorporation in InGaN grown by RF-molecular beam epitaxy,” Jpn. J. Appl. Phys., Part 2 39, L343 (2000) [1.39] Piner, M. K. Behbehani, N. A. El-Masry, F. G. McIntosh, J. C. Roberts, K. S. Boutros, and S. M. Bedair, “Effect of hydrogen on the indium incorporation in InGaN epitaxial films,” Appl. Phys. Lett. 70, 461 (1997) [1.40] C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, “GaInN/GaN growth optimization for high-power green light-emitting diodes,” Appl. Phys. Lett. 85, 866 (2004). [1.41] S. M. Ting, J. C. Ramer, D. I. Florescu, V. N. Merai, B. E. Albert, A. Parekh, D. S. Lee, D. Lu, D. V. Christini, L. Liu, and E. A. Armour, “Morphological evolution of InGaN/GaN quantum-well heterostructures grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 94, 1461 (2003). [1.42] H.-C. Lin, R.-S. Lin, and J.-I. Chyi, “Enhancing the quantum efficiency of InGaN green light-emitting diodes by trimethylindium treatment,” Appl. Phys. Lett. 92, 161113 (2008) [1.43] K. Hiramatsu and Y. Kawaguchi, in Properties, Processing and Applications of Gallium Nitride and Related Semiconductors, Emis Datereviews Series No. 23, edited by J. H. Edgar, S. Strite, and I. Akasaki, H. Amano, C. Wetzel INSPEC/IEE, Herts, pp. 509–513 (1999). [1.44] S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager- Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in InxGa1-xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study” Phys. Rev. B 64, 205311 (2001). [2.1] B. Damilano, N. Grandjean, C. Pernot, and J. Massier, “Monolithic White Light Emitting Diodes Based on InGaN/GaN Multiple-Quantum Wells,” Jpn. J. Appl. Phys. 40, L918 (2001). [2.2] M. Yamada, Y. Narukawa, and T. Mukai, “Phosphor Free High-Luminous-Efficiency White Light-Emitting Diodes Composed of InGaN Multi-Quantum Well,” Jpn. J. Appl. Phys. 41, L246 (2002). [2.3] S.-N. Lee, H. S. Paek, H. Kim, T. Jang, and Y. Park, “Monolithic InGaN-based white light-emitting diodes with blue, green, and amber emissions,” Appl. Phys. Lett. 92, 081107 (2008) [2.4] T. Mukai, “Recent progress in group-III nitride light-emitting diodes,” IEEE J. Selected Topics Quantum Electron. 8, 264 (2002). [2.5] Y. Yamashita, H. Tamura, N. Horio, H. Sato, K. Taniguchi, T. Chinone, S. Omori, and C. Funaoka, “Control of Emission Wavelength of GaInN Single Quantum Well, Light Emitting Diodes Grown by Metalorganic Chemical Vapor Deposition in a Split-Flow Reactor,” Jpn. J. Appl. Phys. 42, 4197 (2003). [2.6] T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes,” Jpn. J. Appl. Phys. 38, 3976 (1999). [2.7] A. Kikuchi, M. Kawai, M. Tada and K. Kishino, “InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate,” Jap. J. Appl. Phys. 43, L1524 (2004). [2.8] T. Akasaka, H. Gotoh, T. Saito, and T. Makimoto, “High luminescent efficiency of InGaN multiple quantum wells grown on InGaN underlying layers,” Appl. Phys. Lett. 85, 3089 (2004). [2.9] M. C. Johnson, E. D. Bourret-Courchesne, J. Wu, Z. Liliental-Weber, D. N. Zakharov, R. J. Jorgenson, T. B. Ng, D. E. McCready, and J. R. Williams, “Effect of gallium nitride template layer strain on the growth of InxGa1-xN/GaN multiple quantum well light emitting diodes,” J. Appl. Phys. 96, 1381 (2004). [2.10] W. Lu, D. B. Li, C. R. Li, F. Shen, and Z. Zhang, “Effect of critical thickness on structural and optical properties of InxGa1–xN/GaN multiple quantum wells,” J. Appl. Phys. 95, 4362 (2004). [2.11] I. H. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69, 2701 (1996). [2.12] Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chuo, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77, 2988 (2000). [2.13] Y. S. Lin, K. J. Ma, C. Hsu, Y. Y. Chung, C. W. Liu, S. W. Feng, Y. C. Cheng, M. H. Mao, C. C. Yang, H. W. Chuang, C. T. Kuo, J. S. Tsang, and T. E. Weirich, “Quasiregular quantum-dot-like structure formation with postgrowth thermal annealing of InGaN/GaN quantum wells, ” Appl. Phys. Lett. 80, 2571 (2002). [2.14] Y. Narukawa, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, “Recombination dynamics of localized excitons in In0.20Ga0.80N- In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55, R1938 (1997). [2.15] Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “'S-shaped' temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370 (1998). [2.16] Y. H. Cho, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “Excitation energy-dependent optical characteristics of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 3181 (1998). [2.17] A. Krost, J. Blasing, M. Lunenburger, H. Protzmann, and M. Heuken, “Evaluation of strain and In content in (InGaN/GaN) multiquantum wells by x-ray analysis,” Appl. Phys. Lett. 75, 689 (1999). [2.18] P. F. Fewster X-ray Scattering from Semiconductors (Imperial College Press, London, 2000). [2.19] S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett. 80, 3913 (2002). [2.20] Y. C. Cheng, C. M. Wu, C. C. Yang, G. A. Li, A. Rosenauer, K. J. Ma, S. C. Shi, and L. C. Chen, “Effects of interfacial layers in InGaN/GaN quantum-well structures on their optical and nanostructural properties, ” J. Appl. Phys. 98, 014317 (2005). [2.21] D. Xiao, K. W. Kim, and S. M. Bedair, “Design of white light-emitting diodes using InGaN/AlInGaN quantum-well structures,” Appl. Phys. Lett. 84, 672 (2004). [2.22] S. W. Feng, T. Y. Tang, Y. C. Lu, S. J. Liu, E. C. Lin, C. C. Yang, K. J. Ma, C. H. Shen, L. C. Chen, J. Y. Lin, and H. X. Jiang, “Cluster size and composition variations in yellow and red light-emitting InGaN thin films upon thermal annealing, ” J. Appl. Phys. 95, 5388 (2004). [2.23] X. H. Zheng, H. Chen, Z. B. Yan, D. S. Li, H. B. Yu, Q. Huang, and J. M. Zhou, “Influence of the deposition time of barrier layers on optical and structural properties of high-efficiency green-light-emitting InGaN/GaN multiple quantum wells,” J. Appl. Phys. 96, 1899 (2004). [2.24] C. A. Parker, J. C. Roberts, and S. M. Bedair, M. J. Reed, S. X. Liu, and N. A. El-Masry, “Determination of the critical layer thickness in the InGaN/GaN heterostructures,” Appl. Phys. Lett. 75, 2776 (1999). [3.1] M. Yamada, Y. Narukawa, and T. Mukai, “Phosphor Free High-Luminous-Efficiency White Light-Emitting Diodes Composed of InGaN Multi-Quantum Well,“ Jpn. J. Appl. Phys. Vol. 41, pp. L 246–L 248, Part 2, No. 3A, Mar. 2002. [3.2] D. Xiao, K. W. Kim, S. M. Bedair, and J. M. Zavada, “Design of white light-emitting diodes using InGaN/AlInGaN quantum-well structures,” Appl. Phys. Lett. Vol. 84, pp. 672-674, Feb. 2004. [3.3] I. Ozden, E. Makarona, A. V. Nurmikko, T. Takeuchi, and M. Krames, “A dual-wavelength indium gallium nitride quantum well light emitting diode,” Appl. Phys. Lett. Vol. 79, pp. 2532-2534, Oct. 2001. [3.4] Y. D. Qi, H. Liang, W. Tang, Z. D. Lu, and K. M. Lau, “Dual wavelength emission InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy,” J. of Crystal Growth, Vol. 272/1-4, pp. 333-340, 2004. [3.5] B. Damilano, N. Grandjean, C. Pernot, and J. Massies, “Monolithic white light emitting diodes based on InGaN/GaN Multiple-Quantum Wells,” Jap. J. Appl. Phys. Vol. 40, L918-L920, 2001. [3.6] M. Yamada, Y. Narukawa, H. Tamaki, Y. Murazaki, and T. Mukai, “A Methodological study of the best solution for generating white light using nitride-based Light-Emitting Diodes,” IEICE Trans. Electronics E88–C, pp.1860-1871, 2005. [3.7] C. H. Chen, S. J. Chang, Y. K. Su, J. K. Sheu, J. F. Chen, C. H. Kuo, and Y. C. Lin, “Nitride-Based Cascade Near White Light-Emitting Diodes,” IEEE Photonics Technol. Lett. Vol. 14, pp.908-910, 2002. [3.8] S. C. Shei, J. K. Sheu, C. M. Tsai, W. C. Lai, M. L. Lee, and C. H. Kuo, ”Emission Mechanism of Mixed-Color InGaN/GaN Multi-Quantum-Well Light-Emitting Diodes,” Jap. J. Appl. Phys. 45, pp.2463-2466, 2006. [3.9] J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang, and Y. K. Su, “White-light emission from InGaN-GaN multiquantum-well light-emitting diodes with Si and Zn codoped active well layer,” IEEE Photonics Technol. Lett. Vol. 14, pp.450-452, 2002. [3.10] S. J. Chang, L. W. Wu, Y. K. Su, C. H. Kuo, W. C. Lai, Y. P. Hsu, J. K. Sheu, J. F. Chen, and J. M. Tsai, “Si and Zn co-doped InGaN-GaN white light-emitting diodes,” IEEE Trans. Electron Dev. Vol. 50, pp.519-521, 2003. [3.11] D. M. Yeh, C. F. Huang, H. S. Chen, T. Y. Tang, C. F. Lu, Y. C. Lu, J. J. Huang, C. C. Yang, I. S. Liu, and W. F. Su, “Control of the color contrast of a polychromatic light-emitting device with CdSe-ZnS nano-crystals on an InGaN-GaN quantum-well structure,” IEEE Photonics Technol. Lett. Vol.18, pp.712-714, 2006. [3.12] H. S. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, W. Y. Shiao, J. J. Huang, C. C. Yang, I. S. Liu, and W. F. Su, “White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/Green two-wavelength light-emitting diode,” IEEE Photonics Technol. Lett. Vol. 18, pp.1430-1432, 2006. [3.13] H. S. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, J. J. Huang, and C. C. Yang, “Mesa size-dependent color contrast in flip-chip blue/green two-color InGaN/GaN multi-quantum-well micro-light-emitting diodes,” Appl. Phys. Lett. Vol. 89, 093501, 2006. [3.14] C. F. Lu, D. M. Yeh, H. S. Chen, C. F. Huang, J. J. Huang, and C. C. Yang, ” Junction temperature-controlled spectrum in a two-color InGaN/GaN quantum-well light-emitting diode,” IEEE Photonics Technol. Lett. Vol. 18, pp.2671-2673, 2006. [3.15] X. Y. Guo, J. W. Graff, and E. F. Schubert, “Photon recycling semiconductor light-emitting diode,” Proc. SPIE Vol. 3938, pp.60-62, 2000. [3.16] S. M. Ting, J. C. Ramer, D. I. Florescu, V. N. Merai, B. E. Albert, A. Parekh, D. S. Lee, D. Lu, D. V. Christini, L. Liu, and E. A. Armour, “Morphological evolution of InGaN/GaN quantum-well heterostructures grown by metalorganic chemical vapor deposition,” J. Appl. Phys. Vol. 94, pp. 1461-1467, May 2003. [3.17] Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. Vol. 69, pp. 2701-2703, Oct. 1996. [3.18] Y. S. Lin, K. J. Ma, C. Hsu, Y. Y. Chung, C. W. Liu, S. W. Feng, Y. C. Cheng, M. H. Mao, C. C. Yang, H. W. Chuang, C. T. Kuo, J. S. Tsang, and T. E. Weirich, “Quasiregular quantum-dot-like structure formation with postgrowth thermal annealing of InGaN/GaN quantum wells,” Appl. Phys. Lett. Vol. 80, pp. 2571-2573, April 2002. [3.19] Y. C. Cheng, E. C. Lin, C. M. Wu, C. C. Yang, and J. R. Yang, “Nanostructures and carrier localization behaviors of green-luminescence InGaN/GaN quantum-well structures of various silicon-doping conditions,” Appl. Phys. Lett. Vol. 84, pp. 2506-2508, April 2004. [3.20] K. S. Kim, M. G. Cheong, C. H. Hong, G. M. Yang, K. Y. Lim, E. K. Suh, and H. J. Lee, “Hole transport in Mg-doped GaN epilayers grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. Vol. 76, pp. 1149-1151, Feb. 2000. [3.21] V. N. Merai, D. I. Florescu, M. Youngers, B. Ronan, D. S. Lee, S. M. Ting, A. Parekh, P. Ahn, E. A. Armour, and W. E. Quinn, paper Fr-A2.5, the 13th ICMOVPE (2006). [3.22] C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, “Prestrained effect on the emission properties of InGaN GaN quantum well structures,” Appl. Phys. Lett. Vol. 89, pp.051913-051905, 2006. [3.23] R. S. Qhalid Fareed, R. Jain, R. Gaska, M. S. Shur, J. Wu, W. Walukiewicz, and M. Asif Khan, “High quality InN/GaN heterostructures grown by migration enhanced metalorganic chemical vapor deposition,” Appl. Phys. Lett. Vol. 84, pp. 1892-1894, March 2004. [3.24] I. Kidoguchi, A. Ishibashi, G. Sugahara, and Y. Ban, “Air-bridged lateral epitaxial overgrowth of GaN thin films,” Appl. Phys. Lett. Vol. 76, pp. 3768-3770, June 2000. [4.1] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, and S. P. DenBaars, T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73, 2006 (1998). [4.2] P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugano, and Y. Aoyagi, “Determination of photoluminescence mechanism in InGaN quantum wells,” Appl. Phys. Lett. 75, 2241 (1999). [4.3] E. Berkowicz, D. Gershoni, G. Bahir, E. Lakin, D. Shilo, E. Zolotoyabko, A. C. Abare, S. P. Denbaars, and L. A. Coldren, “Measured and calculated radiative lifetime and optical absorption of InxGa1-xN/GaN quantum structures,” Phys. Rev. B 61, 10994 (2000). [4.4] C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, “Prestrained effect on the emission properties of InGaN/GaN quantum-well structures”, Appl. Phys. Lett. 89, 051913 (2006). [4.5] H. S. Chen, C. F. Lu, D. M. Yeh, C. F. Huang, J. J. Huang, and C. C. Yang, “Orange-red light-emitting diodes based on a pre-strained InGaN/GaN quantum-well epitaxy structure,” IEEE Photon. Technol. Lett. 18, 2269 (2006). [4.6] C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN/GaN quantum wells,” Appl. Phys. Lett. 90, 151122 (2007). [4.7] Y. S. Chen, L. J. Yao, Y. L. Lin, L. Hung, C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, and C. C. Yang, “Transmission Electron Microscopy Study on Pre-strained InGaN/GaN Quantum Wells,” J. Crystal Growth 297, 66 (2006). [4.8] W. Y. Shiao, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “X-ray diffraction study on an InGaN/GaN quantum-well structure of prestrained growth,” J. Appl. Phys. 101, 113503 (2007). [4.9] S. Fujita, M. Funato, D. C. Park, Y. Ikenaga, and S. Fujita, “Electrical characterization of MOVPE-grown p-type GaN:Mg against annealing temperature,” MRS Internet J. Nitride Semicond. Res. 4S1, G6.31 (1999). [4.10] H. S. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, J. J. Huang, and C. C. Yang, “Mesa-size-dependent color contrast in flip-chip blue/green two-color InGaN/GaN multi-quantum-well micro-light-emitting diodes,” Appl. Phys. Lett. 89, 093501 (2006). [4.11] C. F. Lu, D. M. Yeh, H. S. Chen, C. F. Huang, J. J. Huang, and C. C. Yang, “Junction Temperature-Controlled Spectrum in a Two-Color InGaN–GaN Quantum-Well Light-Emitting Diode,” IEEE Photon. Technol. Lett. 18, 2671 (2006). [4.12] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,” Appl. Phys. Lett. 73, 1691 (1998). [4.13] Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chuo, C. M. Lee, and J. I. Chyi, “Dependence of Composition Fluctuation on Indium Content in InGaN/GaN Multiple Quantum Wells,” Appl. Phys. Lett. 77, 2988 (2000). [4.14] Y. C. Cheng, E. C. Lin, C. M. Wu, C. C. Yang, J. R. Yang, A. Rosenauer, K. J. Ma, S. C. Shi, L. C. Chen, C. C. Pan, and J. I. Chyi, “Nanostructures and carrier localization behaviors of green-luminescence InGaN/GaN quantum-well structures of various silicon-doping conditions,“ Appl. Phys. Lett. 84, 2506 (2004). [4.15] D. Gerthsen, E. Hahn, B. Neubauer, V. Potin, A. Rosenauer, and M. Schowalter, “Indium distribution in epitaxially grown InGaN layers analyzed by transmission electron microscopy,“ Phys. Status Solidi C 0, 1668 (2003). [4.16] A. Rosenauer, U. Fischer, D. Gerthsen, and A. Forster, “Composition evaluation of InxGa1–xAs Stranski-Krastanow-island structures by strain state analysis,“ Appl. Phys. Lett. 71, 3868 (1997). [4.17] C. F. Huang, C. Y. Chen, C. F. Lu, and C. C. Yang, “Reduced Injection-current-induced Blue Shift in an InGaN/GaN Quantum-well Light-emitting Diode of Prestrained Growth,” Appl. Phys. Lett. 91, 051121(2007). [4.18] Y. S. Lin, K. J. Ma, C. Hsu, Y. Y. Chung, C. W. Liu, S. W. Feng, Y. C. Cheng, M. H. Mao, C. C. Yang, H. W. Chuang, C. T. Kuo, J. S. Tsang, and T. E. Weirich, “Quasiregular quantum-dot-like structure formation with postgrowth thermal annealing of InGaN/GaN quantum wells ,” Appl. Phys. Lett. 80, 2571 (2002). [5.1] T. Gessmann and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” J. Appl. Phys. 95, 2203 (2004). [5.2] Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chuo, C. M. Lee, and J. I. Chyi, “Dependence of Composition Fluctuation on Indium Content in InGaN/GaN Multiple Quantum Wells,” Appl. Phys. Lett. 77, 2988 (2000). [5.3] S. W. Feng, E. C. Lin, T. Y. Tang, Y. C. Cheng, H. C. Wang, C. C. Yang, K. J. Ma, C. H. Shen, L. C. Chen, K. H. Kim, J. Y. Lin, and H. X. Jiang, “Thermal Annealing Effects of an InGaN Film with an Avearge Indium Mole Fraction of 0.31,” Appl. Phys. Lett. 83, 3906 (2003). [5.4] I. K. Park, M. K. Kwon, J. O. Kim, S. B. Seo, J. Y. Kim, J. H. Lim, S. J. Park, and Y. S. Kim, “Green light-emitting diodes with self-assembled In-rich InGaN quantum dots,” Appl. Phys. Lett. 91, 133105 (2007). [5.5] Y. H. Cho, Y. P. Sun, H. M. Kim, T. W. Kang, E.-K. Suh, H. J. Lee, R. J. Choi, and Y. B. Hahn, “High quantum efficiency of violet-blue to green light emission in InGaN quantum well structures grown by graded-indium-content profiling method,” Appl. Phys. Lett. 90, 011912 (2007). [5.6] Y. S. Lin, K. J. Ma, C. C. Yang, and T. E. Weirich, “Effects of Post-Growth Thermal Annealing on the Indium Aggregated Structures in InGaN/GaN Quantum Wells,” J. Crystal Growth 242, 35 (2002). [5.7] J. B. Limb, W. Lee, J. H. Ryou, D. Yoo, and R. D. Dupuis, “Comparison of GaN and In0.04Ga0.96N p-Layers on the Electrical and Electroluminescence Properties of Green Light Emitting Diodes,” J. Electron. Mater. 36, 426 (2007). [5.8] J.-H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett. 92, 101113 (2008). [5.9] C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, “Prestrained effect on the emission properties of InGaN/GaN quantum-well structures”, Appl. Phys. Lett. 89, 051913 (2006). [5.10] Y. S. Chen, L. J. Yao, Y. L. Lin, L. Hung, C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, and C. C. Yang, “Transmission Electron Microscopy Study on Pre-strained InGaN/GaN Quantum Wells,” J. Crystal Growth 297, 66 (2006). [5.11] W. Y. Shiao, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “X-ray diffraction study on an InGaN/GaN quantum-well structure of prestrained growth,” J. Appl. Phys. 101, 113503 (2007). [5.12] H. S. Chen, C. F. Lu, D. M. Yeh, C. F. Huang, J. J. Huang, and C. C. Yang, “Orange-red light-emitting diodes based on a pre-strained InGaN/GaN quantum-well epitaxy structure,” IEEE Photon. Technol. Lett. 18, 2269 (2006). [5.13] C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN/GaN quantum wells,” Appl. Phys. Lett. 90, 151122 (2007). [5.14] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys., Part 2 36, L382 (1997). [5.15] Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “'S-shaped' temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370 (1998). [5.16] P. Ruterana, S. Kret, A. Vivet, G. Maciejewski, and P. Dluzewski, “Composition fluctuation in InGaN quantum wells made from molecular beam or metalorganic vapor phase epitaxial layers,” J. Appl. Phys. 91, 8979 (2002). [5.17] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73, 2006 (1998). [5.18] D. Gerthsen, E. Hahn, B. Neubauer, V. Potin, A. Rosenauer, and M. Schowalter, “Indium distribution in epitaxially grown InGaN layers analyzed by transmission electron microscopy,“ Phys. Status Solidi C 0, 1668 (2003). [5.19] C. F. Huang, C. Y. Chen, C. F. Lu, and C. C. Yang, “Reduced Injection-current-induced Blue Shift in an InGaN/GaN Quantum-well Light-emitting Diode of Prestrained Growth,” Appl. Phys. Lett. 91, 051121(2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37026 | - |
| dc.description.abstract | 本論文中,我們介紹預施應力之化學氣相沈積技術並描述其應用。預施應力生長法可有效地提高氮化鎵/氮化銦鎵量子井主動發光層中的銦濃度,而延伸主動層的發光波長。其生長方式為預先生長一低濃度量子井層於底部,接著在相同的生長條件下,可把原先於綠光波段的主動發光層紅移至橘光波段。從陰極射線螢光頻譜顯示,靠近低濃度量子井的主動量子井層,由於受到低濃度量子井較強的應力效應,致使產生較高的銦濃度而發出橘光,反之,於其上遠離低濃度層的量子井則受到較小的作用。從X光繞射量測、穿遂式電子顯微鏡和應力分析軟體等實驗結果也驗證了利用預施應力技術生長的樣品,其不同深度的量子井有不同的銦含量,越靠近低濃度量子井層的量子井有較高的銦濃度。我們利用此生長技術把原本發綠光的磊晶樣品拉長了80 nm的波長,而製作出橘光發光二極體。再者,我們也利用此技術在不需使用螢光粉下,製作白光發光二極體,其電激螢光頻譜可接近理想白光的色座標位置 (1/3, 1/3)。
為了進一步探討預施應力樣品的頻譜藍移現象,我們比較了傳統長晶法的短波長發光二極體和預施應力長法的長波長發光二極體。在注入相同電流的情況下,預施應力元件有較小的頻譜藍移現象。其原因為當注入電流漸增時,所發出的螢光來自深層較高濃度的量子井,而減少頻譜藍移。同時,我們也比較不同厚度的預施應力位障層所產生的效應,較薄的位障層產生較大的應力效果,使輸出頻譜有較明顯的紅移,也減小電流密度引起的頻譜藍移現象。 此外,我們利用預施應力生長法提高綠光樣品的長晶溫度,使得綠光發光二極體有較好發光效率。相較於傳統長晶法的綠光樣品,預施應力樣品可針對內部量子效率、室溫光激螢光強度、電流20 mA下的電激螢光強度,分別提高至167 %、140 %和182 %,從不同激發強度的光激螢光實驗中,發現預施應力樣品有較小的量子侷限史塔克效應。另外從阿瑞尼茲作圖分析和穿遂式電子顯微鏡實驗中也發現預施應力生長法可降低載子侷限效應,因此預施應力樣品發光效率的提高,主要歸功於樣品缺陷密度的降低。 | zh_TW |
| dc.description.abstract | In this dissertation, we introduce the prestrained growth technique of metal organic chemical vapor deposition and its applications. Indium incorporation in InGaN/GaN multiple quantum wells (QWs) can be effectively enhanced based on the prestrained growth technique. The growth technique means the spectral red-shift of the QWs designated for green emission into the orange range in a light-emitting diode (LED) by adding a low-indium QW at the bottom. The cathodo-luminescence spectra indicate that the long-wavelength QWs close to the low-indium one are strongly influenced by this added QW and mainly emit orange photons. Those near the top are less affected. The techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), and strain state analysis (SSA) are used to calibrate indium average contents among the high-indium InGaN/GaN QWs. The results confirm that the high-indium QW closest to the low-indium one has the highest indium content. With the pre-strained growth, orange LEDs are fabricated for elongating the emission wavelength by more than 80 nm. Also, we grow a phosphor-free white-light InGaN/GaN QW LED epitaxial structure with its electroluminescence (EL) spectrum close to the ideal condition in Commission International de l'Eclairage chromaticity based on the presrained growth technique.
Furthermore, we demonstrate the smaller blue shift in increasing injection current level of an InGaN/GaN QW LED of a longer EL peak wavelength based on the prestrained growth technique when compared with the result of an LED of a shorter EL peak wavelength based on the conventional growth technique. The smaller blue shift can be attributed to the more contribution to light emission from the deeper QWs of higher indium contents when the injection current level is increased in the prestrain sample. Also, the dependencies of output spectral overall red shift and current-density-induced spectral blue shift on the prestrained barrier thickness in InGaN/GaN QW LEDs of prestrained growth are demonstrated. Due to the stronger prestrain effect in a sample of a thinner prestrained barrier, the overall spectral red-shift range increases and the current-density-induced blue-shift range decreases with decreasing prestrained barrier thickness. Besides, the enhanced emission efficiency and reduced spectral shifts of a green InGaN/GaN QW LED epitaxial structure by using the prestrained growth technique, when compared with a control sample of the similar emission spectrum with conventional growth, are demonstrated. The internal quantum efficiency, room-temperature PL intensity, EL intensity at the injection current of 20 mA are increased by ~167, ~140, and ~182 %, respectively. Based on the pump-power dependent PL measurement, it is found that the quantum-confined Stark effect becomes weaker in the prestrained growth sample. Also, from the calibration of the Arrhenius plots and the transmission electron microscopy study, the carrier localization effect is observed to become weaker under prestrained growth. Therefore, the enhanced emission efficiency is attributed to the decreased defect density in the prestrained sample. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:18:03Z (GMT). No. of bitstreams: 1 ntu-97-D92941006-1.pdf: 3400411 bytes, checksum: d3df48083f7ae70f265769142a2e1bef (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要…………………………………i
Abstract…………………………………iii Contests…………………………………vi Chapter 1 Introduction 1.1 Solid State Lighting Based on Wide-bandgap Nitride Materials…………………...……….....…1 1.1.1 Multi-chip White-light LED……….…………3 1.1.2 Phosphor Conversion White-light LEDs…..……5 1.1.3 Phosphor-Free White-light LEDs………….....7 1.2 Characteristics of an InGaN/GaN QW...................9 1.2.1 Spinodal Decomposition and Phase Separation…9 1.2.2 Stress/Strain Effect and Piezoelectric Polarization……………………………………..11 1.2.3 Growth of InGaN/GaN MQWs with High Indium Content……………………………………15 1.3 Strain Effect and Indium Incorporation………..17 1.4 Research Motivation…….. …………….……..19 1.5 Organization of the Dissertation……………21 References…………….…………………………23 Chapter 2 Prestrain Growth 2.1 Introduction………………...…….………....……39 2.2 Epitaxial Structures and Growth Conditions…41 2.3 Photoluminescence and Electroluminescence Measurements………………….…………….…42 2.4 Cathodoluminescence Study…........................44 2.5 X-ray Diffraction Analysis...............................46 2.6 Transmission Electron Microscopy and Strain State Analysis Images.........................................49 2.7 Summary..........................................................52 References……………………………………...…54 Chapter 3 Orange-Red and White LEDs Based on Prestrained Growth 3.1 Introduction……………………………………76 3.2 An Orange-Red LED of Prestrained Grwoth…78 3.2.1 Epitaxial Structures and Growth Conditions…...78 3.2.2 Photoluminescence Measurement and Device Characteristics………………………………..…80 3.3 An InGaN/GaN White-LED Based on Prestrained Growth……………………….……..…82 3.3.1 Epitaxial Structures and Growth Conditions...….82 3.3.2 Characterizations and Discussions………….…83 3.4 Summary………………………………………...…86 References………………………………………..…88 Chapter 4 Reduced Injection-current-induced Blue Shift in an InGaN/GaN Quantum-well Light-emitting Diode of Prestrained Growth 4.1 Introduction…..……………………………………103 4.2 Reduced Injection-current-induced Blue Shift in a Yellow LED of Prestrained Growth…….…...….104 4.2.1 Sample Structures and Preparation Conditions..105 4.2.2 Photoluminescence and Electroluminescence Measurements………...……………………….106 4.2.3 Discussions…………...………………………108 4.3 Dependence of Spectral Behavior on Various Prestrained Barrier Thicknesses…….………..109 4.3.1 Epitaxial Growth and Device Fabrication…….109 4.3.2 Device Characteristics…………………………111 4.3.3 Discussions……..……………………………..113 4.4 Summary…………………………………………116 References………………………………………118 Chapter 5 Enhanced Efficiency of Green Light-emitting-diode Epitaxial Structure with Prestrained Growth 5.1 Introduction………………………………………133 5.2 Sample Structures and Preparation Conditions.135 5.3 Photoluminescence and Electroluminescence Measurements……………………………………..137 5.4 Discussions………………..………………………140 5.5 Summary………………...…………………………146 References………………………………………..148 Chapter 6 Conclusions Conclusions…………………………………...165 Publication List................................................169 | |
| dc.language.iso | en | |
| dc.subject | 有機化學氣相沈積 | zh_TW |
| dc.subject | 綠光發光二極體 | zh_TW |
| dc.subject | 白光發光二極體 | zh_TW |
| dc.subject | 橘光發光二極體 | zh_TW |
| dc.subject | 預施應力生長法 | zh_TW |
| dc.subject | organe LED | en |
| dc.subject | prestrained growth | en |
| dc.subject | white-light LED | en |
| dc.subject | green LED | en |
| dc.subject | Metalorganic Chemical Vapor Phase Deposition | en |
| dc.title | 有機金屬氣相沈積生長氮化銦鎵/氮化鎵量子井之應變操控及其應用 | zh_TW |
| dc.title | Strain Manipulation in Growing InGaN/GaN Quantum Wells with Metalorganic Chemical Vapor Phase Deposition and its Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 綦振瀛,謝明勳(Ming Hsun Hsieh),彭隆瀚(Lung Han Peng),黃建璋,徐大正,李允立,吳育任 | |
| dc.subject.keyword | 有機化學氣相沈積,預施應力生長法,橘光發光二極體,白光發光二極體,綠光發光二極體, | zh_TW |
| dc.subject.keyword | Metalorganic Chemical Vapor Phase Deposition,prestrained growth,organe LED,white-light LED,green LED, | en |
| dc.relation.page | 184 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 3.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
