Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36994
標題: 以普魯士藍/聚二氧乙烯噻吩複合薄膜製備軟性酵素電極與其生物感測應用研究
Fabrication of Flexible Enzyme Electrodes based on the Prussian Blue/Poly(3,4-ethylenedioxythiophene) Bilayer
and Its Biosensing Applications
作者: Jing-Yang Chiu
邱景揚
指導教授: 陳林祈
關鍵字: 電流式葡萄糖感測器,可撓式電極,聚二氧乙烯,普魯士藍,網版印刷,
amperometric glucose sensor,flexible electrode,poly(3,4-ethylenedioxythiophene),Prussian blue,screen printing,
出版年 : 2008
學位: 碩士
摘要: This study aims to develop a flexible, cost-effective but highly durable and sensitive amperometric glucose sensor for real-time monitoring of blood sugar and cellulose degradation, respectively. To this purpose, we investigated the use of a novel organic/inorganic bilayer, poly(3,4-ethylenedioxythiophene) (PEDOT)/Prussian blue (ferric hexacyanoferrate, namely PB), as an enhanced immobilization layer of glucose oxidase (GOD) on a screen printed carbon electrode.
To assemble the amperometric glucose sensor, a carbon paste electrode (active area = 0.28 cm2) was screen-printed onto a flexible polyester (PET) substrate at first. Then a PB thin film was electrodeposited on the carbon paste electrode as a solid mediator to carry out the electrocatalysis of hydrogen peroxide, a byproduct indicating the glucose oxidation. Subsequently, a thiophene-based conducting polymer thin film, PEDOT, was grown electrochemically on the PB/carbon paste electrode in the presence of both 3,4-ethylenedioxythiophene monomers and GOD molecules. As a consequence, glucose oxidase molecules were entrapped in the PEDOT matrix atop the PB/carbon paste electrode, and an amperometric glucose sensor was thus fabricated. Before using, the sensor was stored in a phosphate buffer, pH 7.4 at 4 oC.
In principle, when contacting an analyte solution containing glucose such as a serum sample or a degraded polysaccharide mixture, the GOD molecules inside the PEDOT matrix will specifically oxidize glucose, in the presence of oxygen, to gluconic acid and hydrogen peroxide. Then hydrogen peroxide will penetrate through the PEDOT layer and react with the solid mediator PB, which finally shuttles electrons to the carbon electrode and yields a cathodic current in response to hydrogen peroxide and thereby to glucose. Accordingly, our amperometric sensing experiment was performed by applying a constant potential of -0.1 V vs. Ag/AgCl, and the sensor was tested with a dilution series of glucose solutions in the presence of phosphate buffer, pH 7.4.
With flow-injection analysis (FIA) and a sensing potential at -0.1 V vs. Ag/AgCl, the flexible biosensor exhibited a response of < 40 sec, a dynamic range from 100 uM to 30 mM and a sensitivity of 2.1 uA cm-2 mM-1. Also, the biosensor yielded highly reproducible current signals (RSD = 2.54%) and retained ca. 82% of the glucose sensing response after one-month storage at 4 oC. Furthermore, not only detection of cellulose saccharification product but also quantification of the sugar content of a serum was demonstrated successfully by showing high accuracy (RSD = 8.37%) and low interference. Therefore, we consider this new design of glucose sensor based on the PEDOT/PB bilayer is not only novel from the chemistry aspect but also promising for both bioenergy and biomedical applications.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36994
全文授權: 有償授權
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.79 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved