Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36984
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林?輝
dc.contributor.authorDe-Fu Liuen
dc.contributor.author劉德富zh_TW
dc.date.accessioned2021-06-13T15:17:32Z-
dc.date.available2008-07-26
dc.date.copyright2008-07-26
dc.date.issued2008
dc.date.submitted2008-07-25
dc.identifier.citation[1] http://www.gpc.edu/~decms/ibim/nervoussystem2.htm
[2] O. J. Elizabeth, B. Z. Aristides, N. S. Panayotis Regeneration and repair of peripheral nervous INJURY 2005 36S, S24-S29
[3] Materials for Peripheral Nerve Regeneration Macromal. Biosci. 2006, 6, 13-27
[4] Division of Plastic Surgery, The University of California, Irvine, orange, CA 92868; THE ANATOMICAL RECORD 263; 396-404 (2001)
[5] http://www.gpc.edu/~decms/
[6] http://user.rcn.com/jkimball.ma.ultrane/Biology page/P/PNS.html
[7] http://pennhealth.comy/health_info/body guide/reftext/html/nerve.sys_fin_html
[8] The Peripheral Nervous System
http://users.rcn.com/jkimball.ma.ultrane/Biology Pages
[9] The Nervous System
Bethesda, Md: American Physiological Society; Baltimore: distributed by Willams and Wikins c1977
[10] Eyzaquirre, Carlos; 王惠暢等譯; 神經生理學
[11] Nerve injuries, http://orthoinfo.aaos.org/brochure/
[12] Peripheral nerve injuries in the dog. Part Ⅱ Compendium on Continuing Education for the small Animal Practitioner, 269-276 1979
[13] Sunderland S: Nerve and Nerve Injuries. ed2. London: Churchill Livingston,
1978
[14] http://www.physiol.usyd.au/daved/teaching/injury.htm
[15] Textbook of Small Animal Orthopaedics
Principles of Peripheral Nerve Repair
[16] Conell University Weill Medical College
http://www.maleinfertility.org/new-vasoepididy.moscomy.
[17] M.E. Jabaleg, W.H. Wallace, F.R. Heckler: Internal to pographe for major nerves
of Forearm and hand- A current view J Hand Surg 5: 1-18, 1980
[18] O.J. Elizabeth, B. Z. Aristides, N.S. Panayotics Regeneration and repair of peripheral nerves 2005
[19] Huan Wang, MD, Phd, and William C. Nerve Conduits for Nerve Reconstruction Operative Tech. in Plastic and Reconstructive Surgery, Vol 9, No 2: pp 59-66
[20] A.H. Carole and E.R. Gregory biotech. 1998 The development of bioartificial nerve grafts for peripheral-nerve regeneration
[21] Xuejun Wen, A.T. Ratrick Fabrication and characterization of permeable Degradable poly (DL-lactide-co-glycolide) (PLGA) hollow fiber phase inversion
Membranes for use as nerve tract guidance channels; Repartment of Bio-tech 27
March 2006
[22] J. Mohammad, J. Shenaq, E. Rabinovsky Modulation of peripheral nerve
regeneration: a tissue-engineering approach. The role of amnion tube nerve
conduit across a 1-centimeter nerve gap. Plast. Reconstr Surg 2000
[23] M. Michel, A.D. Lee, N. C. James, Peter S. Chang Complications
From silicone-polymer intubulation of nerves. Microsurgery 1989; 10(2): 130-
132
[24] Madison, da Silva CF, P. Dikkes, T.H. Chiu, R.L. Sidman. Increased rate of
peripheral nerve regeneration using bioresorbable nerve guides and a laminin
-containing gel. Exp. Neural 1985; 88(3): 767-772
[25] G.R. Evans, K. Randt, M.S. Widmer, L. Lu In vivo evaluation of poly (L-lactide
acid porous conduits for peripheral nerve regeneration) Biomaterials 1999;20(12)
: 1109-15
[26] C.M. Agrawal, K.A. Athandsion. Technique to control pH in vicinity of
Biodegrading PLA-PGA implants. J Biomed Mater Res 1997;38(2):105-14
[27] S. Itoh, K. Takakuda, S. Kawabata, Y. Aso, K. Kasai, H. Itoh, K. Shinomiya,
Evaluation of cross-linking procedures of collagen tubes used in peripheral
nerve repair. Biomaterials 2002;23(23):4475-81
[28] V. Silvia, P. Elisabetta, L. Giorgio, F. Enrico, P. Enrico, O. Dagmara,K. Halina,
S. Alina Thermal analysis and characterization of cellulose oxidized with
Sodium methaperiodate; thermochimica acta 418 (2004) 123-130
[29] K.M. Rich, T.D. Alexander, J.C. Pryor, J.P. Hollowell. Nerve growth factor enhances regeneration through silicone chambers. Exp Neurol 1989;105: 162-170.
[30] C. He, Z. Chen, Z. Chen. Enhancement of motor nerve regeneration by nerve growth factor. Microsurgery. 1992;13(3):151-4.
[31] I.H. Whitworth, R.A. Brown, C.J. Dore, P. Anand, C.J. Green, G. Terenghi. Nerve growth factor enhances nerve regeneration through fibronectin grafts. J Hand Surg [Br]. 1996 Aug;21(4):514-22.
[32] E.G. Fine, I. Decosterd, M. Papaloïzos, A.D. Zurn, P. Aebischer. GDNF and NGF released by synthetic guidance channels support sciatic nerve regeneration across a long gap. Eur J Neurosci. 2002 Feb;15(4):589-601
[33] P. RoyChowdhury, V. Kumar Fabrication and evaluation of porous
2,3-dialdehydecellulose membrane as a potential biodegradable tissue-engineering scaffold. Wiley InterScience 1 June 2005
[34] V. Guénard, N. Kleitman, T.K. Morrissey, R.P. Bunge, P. Aebischer Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J Neurosci. 1992 Sep;12(9):3310-20.
[35] R. Keeley, E. Sabelman and P. Kadlcik, Synthetic nerve graft containing collagen and syngeneic Schwann cells improves functional, electrophysiological and histological parameters of peripheral nerve regeneration. Restorative Neurol Neurosci 5 (1993), pp. 353–366
[36] K. Bhatheja, J. Field Schwann cells: origins and role in axonal maintenance and regeneration Int J Biochem Cell Biol. 2006;38(12):1995-9. Epub 2006 May 27
[37] B. Nico, D. Mangieri, V. Benagiano, E. Crivellato, D. Ribatti. Nerve growth factor as an angiogenic factor. Microvasc Res. 2007 Jul 21
[38] LEVI-MONTALCINI R. The development to the acoustico-vestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. J Comp Neurol. 1949 Oct;91(2):209-41, illust, incl 3 pl
[39] 陳煌鈞譯 材料科學與工程 曉園出版社, 2001 (台北)
[40] Introduction to composite materials engineering fundamentals
http://www.efunda.com/formulae/solid_mechanics/composite/comp_info.cfm
[41] S. Gaur and G. Vergason, Vergason Technology, Inc., Van Etten, NY
Plasma Polymerization:Theory and Practice
[42] A. Koller, M. Hofer, H.J. Zimmermann, The PPV plasma polymerization system: a new technology for functional coatings on plastics 11th International Symposium on Plasma Chemistry. Vol. 3; Loughborough, Leicestershire; United Kingdom; 22-27 Aug. 1993. pp. 1005-1009. 1993
[43] J. T. Felts , A. D. Grubb Commercial-scale application of plasma processing for polymeric substrates: From laboratory to production Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films -- July 1992 -- Volume 10, Issue 4, pp. 1675-1681
[44] J.B. Alison, R.J. Frank, D. Robert Short* Mass spectrometric study of the radiofrequency-induced plasma polymerisation of styrene and propenoic acid
University of Sheffield, Department of Engineering Materials, L aboratory for Surface and Interface Analysis, Sir Robert HadÐeld Building, Mappin Street, Sheffield, UK S1 3JD
[45] K. Koichi, U. Emiko, K. En-Tang, U. Yoshikiml, I. Yoshito Polymer surface with graft chains PROGRESS IN POLYMER SCIENCE Received 13 November 2001; revised 8 May 2002; accepted 9 May 2002. ; Available online 31 October 2002.
[46] A. Jayakrishnan, S.R. Jameel. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices, Biamaterials, 1996(17): 471-484
[47] A. H. Korn, S. H. Feairheller and E. M. Filachoine Glutaraldehyde: Nature of the reagent Journal of Molecular Biology, Volume 65, Issue 3, 14 April 1972, Pages 525-529
[48] K. Weadock, R.M. Olson, F.H. Silver Evaluation of collagen crosslinking techniques Biomater Med Devices Artif Organs. 1983-1984;11(4):293-318
[49] R.L. Douglas, M. Charles Burns Coupling of acrylic polymers and collagen by use of a water-soluble carbodiimide. II. Investigations of the coupling mechanism Journal of Polymer Science: Polymer Chemistry Edition
Volume 17, Issue 11 , Pages 3473 - 3483
[50] Y.P. Kato, D.L. Christiansen, R.A. Hahn, S.J. Shieh, J.D. Goldstein, F.H. Silver. Mechanical properties of collagen fibres: a comparison of reconstituted and rat tail tendon fibres. Biomaterials. 1989 Jan;10(1):38–42.
[51] R. Tu, C.-L. Lu, K. Thyagarajan, E. Wang, H. Nguyen, S. Shen, C. Hata, R. C. Quijano Kinetic study of collagen fixation with polyepoxy fixatives Journal of Biomedical Materials Research Volume 27, Issue 1 , Pages 3 - 9
[52] K. Eugene Methods for the treatment of collagenous tissues for bioprostheses Review Biomaterials Volume 18, Issue 2, January 1997, Pages 95-105
[53] C. Milos, P.S. Donald, H. Hana, A.C. Thomas, H.K. David Collagen fibers as a temporary scaffold for replacement of ACL in goats Journal of Biomedical Materials Research Volume 27, Issue 3 , Pages 313 – 325
[54] W. A. Naimark, C. A. Pereira, K. Tsang and J. M. Lee HMDC crosslinking of bovine pericardial tissue: a potential role of the solvent environment in the design of bioprosthetic materials Journal of Materials Science: Materials in Medicine 0957-4530 (Print) 1573-4838
[55] D.F. Williams In: Buddy D. Ratner et al., Editors, Biomaterials Science: An Introduction to Materials in Medicine, Academic Press (2004) ISBN 0-12-582463-7 (864pp., $95/£49.99). Biomaterials, Volume 26, Issue 24, August 2005, Page 5093
[56] J.E. Nicole, R.S. Kelly, J.K. Weiyuan Synthesis and physicochemical analysis of gelatin-based hydrogels for drug carrier matrices Biomaterials, Volume 24, Issue 3, February 2003, Pages 509-523
[57] K.L. Carraway, D.E. Koshland Carbodiimide modification of proteins Methods Enzymol, 1972
[58] S. Shushi, K. Koichi, I. Yoshito Introduction of functional groups onto the surface of polyethylene for protein immobilization Biomaterials, Volume 14, Issue 11, September 1993, Pages 817-822
[59] K. Hye-Won, T. Yasuhiko,I. Yoshito Fabrication of porous gelatin scaffolds for tissue engineering Biomaterials, Volume 20, Issue 14, July 1999, Pages 1339-1344
[60] Ohnishi, S.T., and Barr, J.K., A simplified method of quantitating proteins using the biuret and phenol reagents. Anal. Biochem., 86, 193 (1978).
[61] Tim Mosmann Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays
Journal of Immunological Methods, Volume 65, Issues 1-2, 16 December 1983, Pages 55-63
[62] A. Elias, E.D. Lionel, E.C. Warren Wacker Serum Lactic Dehydrogenase Activity: An Analytical Assessment of Current Assays Clinical Chemistry 9: 391-399, 1963
[63] BioVision, LDH-Cytotoxicity Assay Kit, Montain View: BioVision Research Products, Catalog#k311-400
[64] Takara, Premix WST-1 Cell Proliferation Assay System, Takara Catalog#MK400
[65] F.L. Hall, P. Fernyhough, D.N. Ishii, P.R. Vulliet Suppression of nerve growth factor-directed neurite outgrowth in PC12 cells by sphingosine, an inhibitor of protein kinase C J. Biol. Chem., Vol. 263, Issue 9, 4460-4466, Mar, 1988
[66] A. Tarushee, A.M. Irfan, K. Devendra, Rajesh Biomolecular immobilization on conducting polymers for biosensing applications Biomaterials, Volume 28, Issue 5, February 2007, Pages 791-805
[67] J.M. Dicks, M.F. Cardosi, A.P.F. Turner, I. Karube The Application of Ferrocene-Modified n-type Silicon in Glucose Biosensors ELECTROANALYSIS, 1993
[68] B.C. Dave, B. Dunn, J.S. Valentine, J.I. Zink, Sol–gel matrices for protein entrapment. In: T. Cass and FS Ligler, Editors, Immobilized Biomolecules in Analysis, A Practical Approach (1998)
[69] J. M. Wang, “Analysis of infrared spectrum” Materials analysis, Chinese society for materials science
[70] Oxidation of sodium alginate and characterization of the oxidized derivatives
Carbohydrate Polymers, Volume 67, Issue 3, 1 February 2007, Pages 296-304
C.G. Gomez, M. Rinaudo, M.A. Villar
[71] K.Y. Lee, K.H. Bouhadir, D.J. Mooney. Degradation behavior of covalently cross-linked poly (aldehyde guluronate) hydrogels Macromolecules 2000 ; 33 : 97-101
[72] W.A. Bubnis, C.M. Ofner. The determination of epsilon-amino groups in soluble and poorly soluble proteinaceous materials by spectrophotomeric method using trinitrobenzenesulfonic acid. Anal Chem 1992 ; 207 : 129-33
[73] James F. Shackelford. Introduction to materials science for engineers, 5th edition. Prentice Hall International, Inc. 2000.
[74] 陳煌鈞譯 材料科學與工程 曉園出版社
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36984-
dc.description.abstract本實驗以甲基纖維素 (Methyl cellulose)經高碘酸鈉(Sodium periodate)氧化後與明膠(Gelatin)形成共聚物,發展出適合於神經修復的替代材料做為周邊神經再生導管的研究。實驗主要分為三大部分:材料氧化改質、材料性質分析及體外生物相容性(biocompatibility)的測試。首先在材料的氧化改質上,本研究利用過碘酸鈉於甲基纖維素的環狀結構上產生所需官能基在與明膠進行交聯(cross-link),希望利用甲基纖維素降解緩慢及明膠良好的生物相容性,並且在不加入交聯劑(cross-linking agent)的情況下製備出一項嶄新的合成高分子。
第一階段,先製備不同氧化程度的甲基纖維素,希望藉由評估不同氧化度下材料性質的差異來製備出最適合神經再生的導管。
第二階段為材料性質的分析使用各種不同的儀器及方法來探討不同氧化度下各類性質的差異,首先,會利用富利葉紅外線光譜儀(FTIR)來進行官能基的定性測定,確認官能基生成後,進行材料改質的定性分析,希望以此分析了解不同條件下氧化程度的差異,分析後發現氧化劑濃度對於氧化度具有決定性的影響,同時進行交聯度分析藉以了解在加入明膠後材料所生成醛基(aldehyde group)與明膠上胺基(amine group)的反應程度差異,結果發現由於高分子間立體障礙(steric hinderance)的影響,因此,氧化度的大幅提升對於交聯度並未造成相對程度的影響。定性分析完成後,便進行降解性質的分析,有兩種測試方法相互對照後,發現本材料對於減緩降解速率上具有一定的幫助。由於甲基纖維素於37度下具有緩慢降解的特性,因此,對於延緩降解速率具有相當程度的幫助,接下來進行水接觸角分析(contact angle),分析後我們發現經由交聯劑交聯過後的明膠薄膜較疏水(hydrophobic),對於細胞貼附為一較不適宜的環境,相對於本研究所製備的材料其親水性(hydrophilic)佳,對於細胞貼附生長具有相當程度的幫助。
第三階段為生物體外生物相容性測試,藉由生物相容性測試後發現,本研究所製作出的材料,由於其親水特性因此對於細胞生長貼附具有正面幫助。此外,由細胞毒性(cytotoxicity)測試中發現,該材料對細胞不具有毒性,為一適合細胞生長貼附的材料。
總結,利用高碘酸鈉氧化後的甲基纖維素與明膠交聯過後的共聚物具有良好的型態物理化學性質以及生物相容性是一項極有淺力的一項新興材料。
zh_TW
dc.description.abstractIn the study, the dialdehyde cellulose-gelatin was designed and fabricated for peripheral nerve regeneration. The methyl cellulose could successfully transferred into 2, 3-dialdehyde cellulose by using sodium periodate as an oxidant. The DAC-Gel membrane with different conditions was fabricated by controlling the concentration of sodium periodate and the reaction time. The biological stability of membrane was improved by cross-linking with gelatin. The physical-chemical properties and biocompatibility of DAC-Gel membrane were evaluated to ensure the potential viability of this novel co-polymer for peripheral nerve regeneration.
To estimate the properties of the DAC-Gel membrane with different conditions, the methyl cellulose was oxidized by different concentration of sodium periodate. After oxidized, the dialdehyde cellulose with different degree of oxidation was fabricated. FTIR could further confirm the formation of aldehyde group and the quantification of aldehyde group showed that the concentration sodium periodate was the dominant factor to the degree of oxidation. Basic assessment of cross-linking degree showed that steric hinderance could be the factor to hinder cross-linking. According to the degradation test, the DAC-Gel membrane could prolong the degradation time and slow down the rate of degradation. The hydrophilic/hydrophobic surface after cross-linking was evaluated by water contact angle test. The DAC-Gel membrane was more hydrophilic than the Gel membrane using glutaraldehyde as a cross-linker.
The biocompatibility was evaluated by WST-1 cell proliferation and LDH cytotoxicity. The DAC-Gel membrane provided an adaptable place for cell proliferation and the membrane using glycine to block the residual aldehyde group showed a low cytotoxicity.
To sum up, the DAC-Gel membrane was a newly designed material and possessed great potential in the different application.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:17:32Z (GMT). No. of bitstreams: 1
ntu-97-R95548033-1.pdf: 1684073 bytes, checksum: d3da522608b85d2abbb49c7add280705 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要...........................................................ii
Abstract………………………………………………………………………………iv
Content……………………………………………………………………………….vi
List of fiqures………………………………………………………………………..viii
List of tables………………………………………………………………………….x
Chapter 1 Introduction
1.1 Prologue…………………………………………………………………...............1
1.2 Nervous system……………………………………………………………………2
Central nervous system………………………………………………………..3
Peripheral nervous system……………………………………………………..4
Neurons………………………………………………………………………..7
Neuroglia cells (support cells)…………………………………………………9
Neuronal signals……………………………………………………………….9
1.3 Degree of nerve injuries………………………………………………………….11
Structure of nerve bundle…………………………………………………….11
Degree of nerve injury………………………………………………………..11
Approaches for restoring peripheral nerve injuries…………………………..12
1.4 Development of nerve conduit…………………………………………………...17
Biological conduit……………………………………………………………17
Synthetic conduit……………………………………………………………..19
1.5 Purpose of study………………………………………………………………….21
Chapter 2 Basic theory
2.1 Introduction of neurophysiology…………………………………………………24
Schwann cell…………………………………………………………………24
Nerve growth factor………………………………………………………….26
2.2 Intensification of mechanical strength…………………………………………...28
Composite material…………………………………………………………..28
Polymer surface with graft chains……………………………………………30
2.3 Immobilization of bio-molecules………………………………………………...39
Physical adsorption…………………………………………………………..39
Gel entrapment……………………………………………………………….40
Covalent bonding…………………………………………………………….40

Chapter 3 Materials and method
3.1 Experimental equipments……………………………………………………….42
3.2 Raw materials……………………………………………………………………43
3.3 Experimental procedure…………………………………………………………44
3.3 Analysis of material……………………………………………………………...45
Preparation of Cross-linked DAC-Gelatin Membrane……………………..45
Fourier Transform Infrared spectrometer (FTIR)…………………………..46
Degree of Oxidation…………………………………………………….......47
Assessment of Crosslinking………………………………………………...48
Tensile strength instrument…………………………………………………49
Wetability of membrane…………………………………………………….50
Degradation of Cross-linked Membrane………………………………..…..51
Estimation of Biocompatibility……………………………………………..52
Chapter 4 Result and Discussion
4.1 FTIR analysis…………………………………………………………………….55
4.2 Degree of Oxidation……………………………………………………………..58
4.3 Assessment of Cross-linking…………………………………………………….62
4.4 Mechanical property…………………………………………………………….67
4.5 Wetability of Membrane…………………………………………………………68
4.6 Degradation of Cross-linked Membrane…………………………………………71
4.7 Biocompatibility………………………………………………………………….76
4.8 Morphology of DAC-GEL Membrane…………………………………………...80
Chapter 5 Conclusion………………………………………………………………...81
Reference……………………………………………………………………………..83
dc.language.isoen
dc.subject高點酸鈉zh_TW
dc.subject甲基纖維素zh_TW
dc.subject周邊神經修復zh_TW
dc.subject雙醛基纖維素zh_TW
dc.subjectPC-12zh_TW
dc.subject明膠zh_TW
dc.subjectsodium periodateen
dc.subjectperipheral nerve regenerationen
dc.subjectPC-12en
dc.subjectgelatinen
dc.subjectmethyl celluloseen
dc.subject3-dialdehyde celluloseen
dc.title以甲基纖維素補強明膠性質做為周邊神經修復導管之研究zh_TW
dc.titleMethyl Cellulose Enhance Gelatin Membrane as Guidance Channel for Periphral Nerve Regenerationen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳克紹,楊禎明,陳悅生,沙達文(Subramaniam Sadhasivam)
dc.subject.keyword甲基纖維素,高點酸鈉,雙醛基纖維素,明膠,PC-12,周邊神經修復,zh_TW
dc.subject.keywordmethyl cellulose,sodium periodate,2,3-dialdehyde cellulose,gelatin,PC-12,peripheral nerve regeneration,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2008-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved