Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36958
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑞華(Rhey-Hwa Chen)
dc.contributor.authorYuan-Ping Huangen
dc.contributor.author黃元平zh_TW
dc.date.accessioned2021-06-13T08:24:51Z-
dc.date.available2005-08-02
dc.date.copyright2005-08-02
dc.date.issued2005
dc.date.submitted2005-07-15
dc.identifier.citationAdinolfi, E., M. Kim, et al. (2003). 'Tyrosine phosphorylation of HSP90 within the P2X7 receptor complex negatively regulates P2X7 receptors.' Journal of Biological Chemistry 278(39): 37344-51.

Alonso, G., M. Koegl, et al. (1995). 'Sequence requirements for binding of Src family tyrosine kinases to activated growth factor receptors.' Journal of Biological Chemistry 270(17): 9840-8.

Aravind, L. and E. V. Koonin (2000). 'The U box is a modified RING finger - a common domain in ubiquitination.' Current Biology 10(4): R132-4.

Avizienyte, E., A. W. Wyke, et al. (2002). 'Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling.' Nature Cell Biology 4(8): 632-8.

Ballinger, C. A., P. Connell, et al. (1999). 'Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions.' Molecular & Cellular Biology 19(6): 4535-45.

Bardos, J. I. and M. Ashcroft (2004). 'Hypoxia-inducible factor-1 and oncogenic signalling.' Bioessays 26(3): 262-9.

Barker, K. T., L. E. Jackson, et al. (1997). 'BRK tyrosine kinase expression in a high proportion of human breast carcinomas.' Oncogene 15(7): 799-805.

Bell, H. S. and K. M. Ryan (2005). 'Intracellular signalling and cancer: complex pathways lead to multiple targets.' European Journal of Cancer 41(2): 206-15.

Bellis, S. L., J. T. Miller, et al. (1995). 'Characterization of tyrosine phosphorylation of paxillin in vitro by focal adhesion kinase.' Journal of Biological Chemistry 270(29): 17437-41.

Biscardi, J. S., R. C. Ishizawar, et al. (2000). 'Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor and c-Src interactions in breast cancer.' Breast Cancer Research 2(3): 203-10.

Bjorge, J. D., A. Pang, et al. (2000). 'Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines.' Journal of Biological Chemistry 275(52): 41439-46.

Born, M., L. Quintanilla-Fend, et al. (2005). 'Simultaneous over-expression of the Her2/neu and PTK6 tyrosine kinases in archival invasive ductal breast carcinomas.' Journal of Pathology 205(5): 592-6.

Bos, J. L. (1989). 'ras oncogenes in human cancer: a review.[erratum appears in Cancer Res 1990 Feb 15;50(4):1352].' Cancer Research 49(17): 4682-9.

Brown, M. C., J. A. Perrotta, et al. (1996). 'Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding.' Journal of Cell Biology 135(4): 1109-23.

Brown, M. C. and C. E. Turner (2004). 'Paxillin: adapting to change.' Physiological Reviews 84(4): 1315-39.

Buchner, J. (1999). 'Hsp90 & Co. - a holding for folding.' Trends in Biochemical Sciences 24(4): 136-41.

Calo, V., M. Migliavacca, et al. (2003). 'STAT proteins: from normal control of cellular events to tumorigenesis.' Journal of Cellular Physiology 197(2): 157-68.

Chen, H. Y., C. H. Shen, et al. (2004). 'Brk activates rac1 and promotes cell migration and invasion by phosphorylating paxillin.' Molecular & Cellular Biology 24(24): 10558-72.
Chen, J. M., R. T. Aimes, et al. (1991). 'Isolation and characterization of a 70-kDa metalloprotease (gelatinase) that is elevated in Rous sarcoma virus-transformed chicken embryo fibroblasts.' Journal of Biological Chemistry 266(8): 5113-21.

Connell, P., C. A. Ballinger, et al. (2001). 'The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins.' Nature Cell Biology 3(1): 93-6.
Courtneidge, S. A., R. Dhand, et al. (1993). 'Activation of Src family kinases by colony stimulating factor-1, and their association with its receptor.' EMBO Journal 12(3): 943-50.
Dawid, I. B., J. J. Breen, et al. (1998). 'LIM domains: multiple roles as adapters and functional modifiers in protein interactions.' Trends in Genetics 14(4): 156-62.
de Jong, R., J. ten Hoeve, et al. (1995). 'Crkl is complexed with tyrosine-phosphorylated Cbl in Ph-positive leukemia.' Journal of Biological Chemistry 270(37): 21468-71.

Derry, J. J., G. S. Prins, et al. (2003). 'Altered localization and activity of the intracellular tyrosine kinase BRK/Sik in prostate tumor cells.' Oncogene 22(27): 4212-20.
Derry, J. J., S. Richard, et al. (2000). 'Sik (BRK) phosphorylates Sam68 in the nucleus and negatively regulates its RNA binding ability.' Molecular & Cellular Biology 20(16): 6114-26.
Dikic, I., I. Szymkiewicz, et al. (2003). 'Cbl signaling networks in the regulation of cell function.' Cellular & Molecular Life Sciences 60(9): 1805-27.
Duan, L., A. L. Reddi, et al. (2004). 'The Cbl family and other ubiquitin ligases: destructive forces in control of antigen receptor signaling.' Immunity 21(1): 7-17.
Eccles, S. A. (2005). 'Targeting key steps in metastatic tumour progression.' Current Opinion in Genetics & Development 15(1): 77-86.
Feshchenko, E. A., W. Y. Langdon, et al. (1998). 'Fyn, Yes, and Syk phosphorylation sites in c-Cbl map to the same tyrosine residues that become phosphorylated in activated T cells.' Journal of Biological Chemistry 273(14): 8323-31.
Frame, M. C. (2002). 'Src in cancer: deregulation and consequences for cell behaviour.' Biochimica et Biophysica Acta 1602(2): 114-30.
Fukuda, R., K. Hirota, et al. (2002). 'Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells.' Journal of Biological Chemistry 277(41): 38205-11.
Giannini, A. and M. J. Bijlmakers (2004). 'Regulation of the Src family kinase Lck by Hsp90 and ubiquitination.' Molecular & Cellular Biology 24(13): 5667-76.

Glenney, J. R., Jr. and L. Zokas (1989). 'Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton.' Journal of Cell Biology 108(6): 2401-8.

Haegebarth, A., D. Heap, et al. (2004). 'The nuclear tyrosine kinase BRK/Sik phosphorylates and inhibits the RNA-binding activities of the Sam68-like mammalian proteins SLM-1 and SLM-2.' Journal of Biological Chemistry 279(52): 54398-404.

Haley, J. D., J. J. Hsuan, et al. (1989). 'Analysis of mammalian fibroblast transformation by normal and mutated human EGF receptors.' Oncogene 4(3): 273-83.
Harris, A. L. (2002). 'Hypoxia--a key regulatory factor in tumour growth.' Nature Reviews. Cancer 2(1): 38-47.
Hauck, C. R., D. A. Hsia, et al. (2002). 'v-Src SH3-enhanced interaction with focal adhesion kinase at beta 1 integrin-containing invadopodia promotes cell invasion.' Journal of Biological Chemistry 277(15): 12487-90.

Huang, Z., L. Nie, et al. (2004). 'Notch-induced E2A degradation requires CHIP and Hsc70 as novel facilitators of ubiquitination.' Molecular & Cellular Biology 24(20): 8951-62.

Isaacs, J. S., Y. J. Jung, et al. (2002). 'Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway.' Journal of Biological Chemistry 277(33): 29936-44.

Jiang, B. H., F. Agani, et al. (1997). 'V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression.' Cancer Research 57(23): 5328-35.

Johnson, E. S. (2002). 'Ubiquitin branches out.' Nature Cell Biology 4(12): E295-8.

Kamalati, T., H. E. Jolin, et al. (2000). 'Expression of the BRK tyrosine kinase in mammary epithelial cells enhances the coupling of EGF signalling to PI 3-kinase and Akt, via erbB3 phosphorylation.' Oncogene 19(48): 5471-6.

Kamalati, T., H. E. Jolin, et al. (1996). 'Brk, a breast tumor-derived non-receptor protein-tyrosine kinase, sensitizes mammary epithelial cells to epidermal growth factor.' Journal of Biological Chemistry 271(48): 30956-63.
Kraus, M. H., N. C. Popescu, et al. (1987). 'Overexpression of the EGF receptor-related proto-oncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms.' EMBO Journal 6(3): 605-10.

Lai, B. T., N. W. Chin, et al. (1984). 'Quantitation and intracellular localization of the 85K heat shock protein by using monoclonal and polyclonal antibodies.' Molecular & Cellular Biology 4(12): 2802-10.

Laughner, E., P. Taghavi, et al. (2001). 'HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression.' Molecular & Cellular Biology 21(12): 3995-4004.
Lin, H. S., G. J. Berry, et al. (2004). 'Identification of tyrosine kinases overexpressed in head and neck cancer.' Archives of Otolaryngology -- Head & Neck Surgery 130(3): 311-6.
Llor, X., M. S. Serfas, et al. (1999). 'BRK/Sik expression in the gastrointestinal tract and in colon tumors.' Clinical Cancer Research 5(7): 1767-77.
Lukong, K. E. and S. Richard (2003). 'Sam68, the KH domain-containing superSTAR.' Biochimica et Biophysica Acta 1653(2): 73-86.
Manning, G., D. B. Whyte, et al. (2002). 'The protein kinase complement of the human genome.' Science 298(5600): 1912-34.
Mercer, K. E. and C. A. Pritchard (2003). 'Raf proteins and cancer: B-Raf is identified as a mutational target.' Biochimica et Biophysica Acta 1653(1): 25-40.
Minoguchi, M., S. Minoguchi, et al. (2003). 'STAP-2/BKS, an adaptor/docking protein, modulates STAT3 activation in acute-phase response through its YXXQ motif.' Journal of Biological Chemistry 278(13): 11182-9.

Mitchell, P. J., K. T. Barker, et al. (1994). 'Cloning and characterisation of cDNAs encoding a novel non-receptor tyrosine kinase, brk, expressed in human breast tumours.' Oncogene 9(8): 2383-90.

Miyata, Y. and E. Nishida (2004). 'CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37.' Molecular & Cellular Biology 24(9): 4065-74.

Murata, S., T. Chiba, et al. (2003). 'CHIP: a quality-control E3 ligase collaborating with molecular chaperones.' International Journal of Biochemistry & Cell Biology 35(5): 572-8.

Muthuswamy, S. K. and W. J. Muller (1995). 'Activation of Src family kinases in Neu-induced mammary tumors correlates with their association with distinct sets of tyrosine phosphorylated proteins in vivo.' Oncogene 11(9): 1801-10.

Muthuswamy, S. K., P. M. Siegel, et al. (1994). 'Mammary tumors expressing the neu proto-oncogene possess elevated c-Src tyrosine kinase activity.' Molecular & Cellular Biology 14(1): 735-43.
Ogiso, H., Yokoyama,S., et al. (2004). 'Phoaphorylation analysis of 90 kDa heat shock protein within the cytosolic aryhydrocarbon receptor comlex.' Biochemistry 2004, 43: 15510-15519
Pearl, L. H. (2005). 'Hsp90 and Cdc37 -- a chaperone cancer conspiracy.' Current Opinion in Genetics & Development 15(1): 55-61.

Peng, Z. Y. and C. A. Cartwright (1995). 'Regulation of the Src tyrosine kinase and Syp tyrosine phosphatase by their cellular association.' Oncogene 11(10): 1955-62.

Petro, B. J., R. C. Tan, et al. (2004). 'Differential expression of the non-receptor tyrosine kinase BRK in oral squamous cell carcinoma and normal oral epithelium.' Oral Oncology 40(10): 1040-7.

Picard, D. (2002). 'Heat-shock protein 90, a chaperone for folding and regulation.' Cellular & Molecular Life Sciences 59(10): 1640-8.

Pickart, C. M. (2000). 'Ubiquitin in chains.' Trends in Biochemical Sciences 25(11): 544-8.

Pickart, C. M. (2001). 'Mechanisms underlying ubiquitination.' Annual Review of Biochemistry 70: 503-33.

Rao, N., I. Dodge, et al. (2002). 'The Cbl family of ubiquitin ligases: critical negative regulators of tyrosine kinase signaling in the immune system.' Journal of Leukocyte Biology 71(5): 753-63.

Ravi, R., B. Mookerjee, et al. (2000). 'Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha.' Genes & Development 14(1): 34-44.

Riggs, D., M. Cox, et al. (2004). 'Functional specificity of co-chaperone interactions with Hsp90 client proteins.' Critical Reviews in Biochemistry & Molecular Biology 39(5-6): 279-95.

Schaller, M. D., J. D. Hildebrand, et al. (1994). 'Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src.' Molecular & Cellular Biology 14(3): 1680-8.

Schaller, M. D. and J. T. Parsons (1995). 'pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk.' Molecular & Cellular Biology 15(5): 2635-45.

Scheibel, T., H. I. Siegmund, et al. (1999). 'The charged region of Hsp90 modulates the function of the N-terminal domain.' Proceedings of the National Academy of Sciences of the United States of America 96(4): 1297-302.

Scheufler, C., A. Brinker, et al. (2000). 'Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine.' Cell 101(2): 199-210.

Schnell, J. D. and L. Hicke (2003). 'Non-traditional functions of ubiquitin and ubiquitin-binding proteins.' Journal of Biological Chemistry 278(38): 35857-60.

Scholz, G. M., S. D. Hartson, et al. (2001). 'The molecular chaperone Hsp90 is required for signal transduction by wild-type Hck and maintenance of its constitutively active counterpart.' Cell Growth & Differentiation 12(8): 409-17.

Serfas, M. S. and A. L. Tyner (2003). 'Brk, Srm, Frk, and Src42A form a distinct family of intracellular Src-like tyrosine kinases.' Oncology Research 13(6-10): 409-19.

Shao, J., T. Prince, et al. (2003). 'Phosphorylation of serine 13 is required for the proper function of the Hsp90 co-chaperone, Cdc37.' Journal of Biological Chemistry 278(40): 38117-20.

Sherr, C. J. and F. McCormick (2002). 'The RB and p53 pathways in cancer.' Cancer Cell 2(2): 103-12.

Soti, C., A. Racz, et al. (2002). 'A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket.' Journal of Biological Chemistry 277(9): 7066-75.

Stebbins, C. E., A. A. Russo, et al. (1997). 'Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent.' Cell 89(2): 239-50.

Steelman, L. S., S. C. Pohnert, et al. (2004). 'JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis.' Leukemia 18(2): 189-218.

Sulis, M. L. and R. Parsons (2003). 'PTEN: from pathology to biology.' Trends in Cell Biology 13(9): 478-83.

Summy, J. M. and G. E. Gallick (2003). 'Src family kinases in tumor progression and metastasis.' Cancer & Metastasis Reviews 22(4): 337-58.

Sun, L. and Z. J. Chen (2004). 'The novel functions of ubiquitination in signaling.[erratum appears in Curr Opin Cell Biol. 2004 Jun;16(3):339-40].' Current Opinion in Cell Biology 16(2): 119-26.

Tezuka, T., H. Umemori, et al. (1996). 'Physical and functional association of the cbl protooncogen product with an src-family protein tyrosine kinase, p53/56lyn, in the B cell antigen receptor-mediated signaling.' Journal of Experimental Medicine 183(2): 675-80.

Thien, C. B. and W. Y. Langdon (2001). 'Cbl: many adaptations to regulate protein tyrosine kinases.' Nature Reviews Molecular Cell Biology 2(4): 294-307.

Thomas, S. M. and J. S. Brugge (1997). 'Cellular functions regulated by Src family kinases.' Annual Review of Cell & Developmental Biology 13: 513-609.

Tsubouchi, A., J. Sakakura, et al. (2002). 'Localized suppression of RhoA activity by Tyr31/118-phosphorylated paxillin in cell adhesion and migration.' Journal of Cell Biology 159(4): 673-83.

Turner, C. E., J. R. Glenney, Jr., et al. (1990). 'Paxillin: a new vinculin-binding protein present in focal adhesions.' Journal of Cell Biology 111(3): 1059-68.

Turner, C. E. and J. T. Miller (1994). 'Primary sequence of paxillin contains putative SH2 and SH3 domain binding motifs and multiple LIM domains: identification of a vinculin and pp125Fak-binding region.' Journal of Cell Science 107(Pt 6): 1583-91.

Windham, T. C., N. U. Parikh, et al. (2002). 'Src activation regulates anoikis in human colon tumor cell lines.' Oncogene 21(51): 7797-807.

Wong, B. R., F. Parlati, et al. (2003). 'Drug discovery in the ubiquitin regulatory pathway.' Drug Discovery Today 8(16): 746-54.

Workman, P. (2004). 'Altered states: selectively drugging the Hsp90 cancer chaperone.' Trends in Molecular Medicine 10(2): 47-51.

Xu, W., S. C. Harrison, et al. (1997). 'Three-dimensional structure of the tyrosine kinase c-Src.[see comment].' Nature 385(6617): 595-602.

Xu, W., M. Marcu, et al. (2002). 'Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu.' Proceedings of the National Academy of Sciences of the United States of America 99(20): 12847-52.

Xu, Y. and S. Lindquist (1993). 'Heat-shock protein hsp90 governs the activity of pp60v-src kinase.' Proceedings of the National Academy of Sciences of the United States of America 90(15): 7074-8.

Zamir, E. and B. Geiger (2001). 'Molecular complexity and dynamics of cell-matrix adhesions.[comment].' Journal of Cell Science 114(Pt 20): 3583-90.

Zhao, Y. G., R. Gilmore, et al. (2001). 'Hsp90 phosphorylation is linked to its chaperoning function. Assembly of the reovirus cell attachment protein.' Journal of Biological Chemistry 276(35): 32822-7.

Zheng, X. M., R. J. Resnick, et al. (2000). 'A phosphotyrosine displacement mechanism for activation of Src by PTPalpha.' EMBO Journal 19(5): 964-78.

Zhou, P., N. Fernandes, et al. (2003). 'ErbB2 degradation mediated by the co-chaperone protein CHIP.' Journal of Biological Chemistry 278(16): 13829-37.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36958-
dc.description.abstract乳癌激酶(Breast tumor kinase, Brk)是屬於Src-like酪氨酸激酶家族中的一員,在大部分惡性乳癌細胞株中都有大量表現。先前的研究已證實乳癌激酶的表現與乳癌病灶的進程有很大的關係,然而乳癌激酶促進癌症發展的分子機制至今仍不是十分清楚。在本篇論文中,我們發現了Paxillin是乳癌激酶的一個新受質。在細胞內乳癌激酶的表現會促進Paxillin 的酪氨酸磷酸化,而且乳癌激酶和Paxillin在細胞內會彼此結合。此外,我們也證實了Paxillin的N端LD區域以及C端LIM區塊均可以直接和乳癌激酶相互作用。我們同時也發現了乳癌激酶會和Hsp90互相結合。以Geldanamycin抑制Hsp90的活性會造成乳癌激酶的泛素化(ubiquitination)增加,這個現象在我們使用乳癌激酶的永久活化突變型(BrkY447F)時更加明顯,表示活化的乳癌激酶會受到Hsp90的保護而免於受到 泛素化而降解。我們接著也證實了CHIP 可能是造成乳癌激酶在Hsp90被抑制下泛素化上升的ubiquitin ligase。另外,我們發現表皮生長激素(EGF)會經由活化一種ubiquitin ligase Cbl促進乳癌激酶的泛素化進而激化乳癌激酶的蛋白質降解。我們的實驗結果顯示乳癌激酶的訊息傳遞不僅受到Hsp90的保護,同時受到Cbl及CHIP造成之乳癌激酶泛素化的負向調控。zh_TW
dc.description.abstractBreast tumor kinase (Brk) is a Src-like family non-receptor tyrosine kinase over-expressed in most breast cancer cells. Previous studies have established the correlation of Brk expression and the progression of malignancy. However, the exact biological function of Brk and the molecular mechanism through which Brk contributes to tumor metastasis remain to be elucidated. In this thesis, we have identified Paxillin as a novel cytosolic substrate of Brk. Expression of Brk significantly enhanced tyrosine phosphorylation of Paxillin, and these two proteins interacted with each other in vivo. We also showed that both N-terminal LD region and C-terminal LIM domain of Paxillin could mediate interaction with Brk. Besides, we found Hsp90 interacts with Brk in vivo. Subsequent experiments demonstrated that active Brk is under the protection of Hsp90 that its inactivation by treatment of geldanamycin (GA) results in ubiquitination of Brk mediated by the ubiquitin ligase C-terminus of Hsc70 interacting protein (CHIP). Moreover, we found that EGF treatment stimulated protein turnover of Brk through ubiquitination catalyzing by the ubiquitin ligase Cbl that is activated in response to EGF signal. These data suggested signaling of Brk is escorted by Hsp90 and negatively regulated by Cbl/CHIP-mediated ubiquitination.en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:24:51Z (GMT). No. of bitstreams: 1
ntu-94-R92448006-1.pdf: 2726077 bytes, checksum: f8e19d62d112444278cda020ba87b699 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要 3
Abstract 4
Introduction 5
Signal transduction in oncogensis 5
Malignancy: angiogenesis and metastasis 6
Src family kinases 7
Breast tumor kinase 9
Paxillin 11
Ubiquitination 12
Heat shock protein 90 13
Carboxyl terminus of Hsc 70 interacting protein (CHIP) 15
Casitas B lymphoma (Cbl) 16
Results 18
Identification of Paxillin as a substrate of Brk 18
Brk-induced Paxillin phosphorylation is independent of FAK 19
Brk interacts with Paxillin in vitro and in vivo 19
Activated Brk is predisposed to ubiquitination 21
Identification of Brk-interacting proteins 22
Hsp90 interacts with Brk in vivo 22
Inactivation of Hsp90 promotes ubiquitination of Brk 23
CHIP acts as an ubiquitin E3 ligase of Brk 24
EGF stimulation promotes ubiquitination of Brk 25
EGF signaling stimulates protein turnover of Brk 25
Cbl mediates ubiquitination of Brk following EGF signaling 26
Discussion 28
References 34
Figures 48
Figure 1. Activation of c-Src 48
Figure 2. Paxillin interactions 49
Figure 3. Domain structure of Cbl family ubiquitin ligase 50
Figure 4. Brk promotes tyrosine phosphorylation od Paxillin. 51
Figure 5. Brk does not influence tyrosine phosphorylation of FAK. 52
Figure 6. Brk and Paxillin interact reciprocally in vivo. 53
Figure 7. Both N-terminal and C-terminal fragments of Paxillin are capable of interacting with Brk in vitro. 54
Figure 8. Schematic model of the signaling pathway Brk participates in. 55
Figure 9. Brk Y447F is more susceptible to ubiquitination. 56
Figure 10. Characterization of Brk-interacting proteins 57
Figure 11. Brk interacts with Hsp90 in vivo. 58
Figure 12. Hsp90 interacts with Brk in vivo. 59
Figure 13. Inhibition of Hsp90 promotes ubiquitination of Brk. 60
Figure 14. CHIP interacts with Brk in vivo. 61
Figure 15. CHIP mediates ubiquitination of Brk. 62
Figure 16. Ubiquitination of Brk is enhanced flowed by EGF treatment in a time-dependent manner. 63
Figure 17. EGF treatment stimulates protein turnover of Brk. 64
Figure 18. Brk interacts with Cbl in vivo. 65
Figure 19. Cbl interacts with Brk in vivo. 66
Figure 20. Cbl is capable of catalyzing ubiquitinatiob of Brk. 67
Figure 21. Cbl S381A blocks the effect of EGF on ubiquitination of Brk. 68
Figure 22. Model of Brk regulation by Hsp90 and ubiquitination. 69
Material and methods 70
dc.language.isoen
dc.subject泛素化zh_TW
dc.subject訊息傳遞zh_TW
dc.subject乳癌激&#37238zh_TW
dc.subjectUbiqitinationen
dc.subjectBrken
dc.subjectHsp90en
dc.title乳癌激酶之訊息傳遞暨其受Hsp90與泛素化之調控zh_TW
dc.titleSignaling Transducation of Brk and Its Regulation by Hsp90 in Concert with Ubiquitinationen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李芳仁,張智芬
dc.subject.keyword乳癌激&#37238,泛素化,訊息傳遞,zh_TW
dc.subject.keywordBrk,Hsp90,Ubiqitination,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2005-07-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved