請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36953完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張富雄(Fu-Hsiung Chang) | |
| dc.contributor.author | Chang-Chen Liu | en |
| dc.contributor.author | 劉昶辰 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:24:34Z | - |
| dc.date.available | 2005-08-02 | |
| dc.date.copyright | 2005-08-02 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-17 | |
| dc.identifier.citation | 1.Dingwall, C., et al. (1989). Human immunodeficiency virus 1 Tat protein binds transactivation-responsive region (TAR) in vitro. Proc. Natl. Acad. Sci. USA 86: 6925–6929.
2.Ensoli, B., Barillari, G., and Salahuddin, S. (1990). Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 345: 84–86. 3.Ensoli, B., et al. (1992). Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J. Virol. 67: 277–287. 4.Barillari, G., Gendelman, R., Gallo, R., and Ensoli, B. (1993). The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokineactivated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. Proc. Natl. Acad. Sci. USA 90: 7941–7945. 5.Flores, S. C., et al. (1993). Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc. Natl. Acad. Sci. USA 90: 7632–7636. 6.Howcroft, T. K., Strebel, K., Martin, M. A., and Singer, D. S. (1993). Repression of MHC class I gene promoter activity by two-exon Tat of HIV. Science 260: 1320–1322. 7.Taylor, J. P., et al. (1992). Activation of expression of genes coding for extracellular matrix proteins in Tat-producing glioblastoma cells. Proc. Natl. Acad. Sci. USA 89: 9617–9621. 8.Westendorp, M., Li-Weber, M., Frank, R. W., and Krammer, P. H. (1994). Human immunodeficiency virus type 1 Tat upregulates interleukin 2 secretion in activated T cells. J. Virol. 68: 4177–4185. 9.Vive`s, E., Brodin, P., and Lebleu, B. (1997). A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272: 16010–16017. 10.Futaki, S., et al. (2001). Arginine-rich peptides. An abundant source of membranepermeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276: 5836–5840. 11.Schwarze, S. R., Hurska, K. A., and Dowdy, S. F. (2000). Protein transduction: unrestricted delivery into all cells. Trends Cell Biol. 10: 290–295. 12.Rusnati, M., et al. (1997). Interaction of HIV-1 Tat protein with heparin. J. Biol. Chem. 272: 11313–11320. 13.Tyagi, M., Rusnati, M., Presta, M., and Giacca, M. (2001). Internalization of HIV-1 Tat requires cell surface heparin sulfate proteoglycans. J. Biol. Chem. 276: 3254–3261. 14.Pelkmans, L., Kartenbeck, J., and Helenius, A. (2001). Caveolar endocytosis of simian virus SV40 reveals a new two-step vesicular-transport pathway to the ER. Nat. Cell Biol. 3: 473–483. 15.Stehle, T., Yan, Y., Benjamin, T. L., and Harrison, S. C. (1994). Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369: 160–163. 16.Marjomaki, V., et al. (2002). Internalization of echovirus 1 in caveolae. J. Virol. 76: 1856–1865. 17.Futaki, S., Suzuki, T., Ohashi, W., Yagami, T., Tanaka, S., Ueda, K., and Sugiura, Y. (2001) J. Biol. Chem. 276, 5836–5840 18.Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., and Prochiantz, A. (1996) J. Biol. Chem. 271, 18188–18193 19.Suzuki, T., Futaki, S., Niwa, M., Tanaka, S., Ueda, K., and Sugiura, Y. (2002) J. Biol. Chem. 277, 2437–2443 20.Vives, E., Brodin, P., and Lebleu, B. (1997) J. Biol. Chem. 272, 16010–16017 21.Derossi, D., Joliot, A. H., Chassaing, G., and Prochiantz, A. (1994) J. Biol. Chem. 269, 10444–10450 22.Tyagi, M., Rusnati, M., Presta, M., and Giacca, M. (2001) J. Biol. Chem. 276, 3254–3261 23.Lundberg, M., and Johansson, M. (2002) Biochem. Biophys. Res. Commun. 291, 367–371 24.Lundberg, M., Wikstrom, S., and Johansson, M. (2003) Mol. Ther. 8, 143–150 25.Richard, J. P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M. J., Chernomordik, L. V., and Lebleu, B. (2003) J. Biol. Chem. 278, 585–590 26.Console, S., Marty, C., Garcia-Echeverria, C., Schwendener, R., and Ballmer- Hofer, K. (2003) J. Biol. Chem. 278, 35109–35114 27.Ferrari, A., Pellegrini, V., Arcangeli, C., Fittipaldi, A., Giacca, M., and Beltram, F. (2003) Mol. Ther. 8, 284–294 28.Fittipaldi, A., Ferrari, A., Zoppe, M., Arcangeli, C., Pellegrini, V., Beltram, F., and Giacca, M. (2003) J. Biol. Chem. 278, 34141–34149 29.Drin, G., Cottin, S., Blanc, E., Rees, A. R., and Temsamani, J. (2003) J. Biol. Chem. 278, 31192–31201 30.Sakai, N., and Matile, S. (2003) J. Am. Chem. Soc. 125, 14348–14356 31.Hariton-Gazal, E., Rosenbluh, J., Graessmann, A., Gilon, C., and Loyter, A. (2003) J. Cell Sci. 116, 4577–4586 32.Brain Albarran, Richard To and Patrick S.Stayton. A TAT-streptavidin fusion protein directs uptake of biotinylated cargo into mammalian cells. Protein Engineering, Design&Selection 33.Nature medicine vol.10 p310 34.Derossi,D., Joliot,A.H., Chassaing,G. and Prochiantz,A. (1994) J. Biol. Chem., 269, 10444–10450. 35.Fawell,S., Seery,J., Daikh,Y., Moore,C., Chen,L.L., Pepinsky,B.and Barsoum,J. (1994) Proc. Natl Acad. Sci. USA, 91, 664–668. 36.Elliott,G. and O’Hare,P. (1997) Cell, 88, 223–233. Schwarze,S.R., Hruska,K.A. and Dowdy,S.F. (2000) Trends Cell Biol., 10, 290–295. 37.Snyder,E.L. and Dowdy,S.F. (2001) Curr. Opin. Mol. Ther., 3, 147–152. 38.Derossi,D., Calvet,S., Trembleau,A., Brunissen,A., Chassaing,G. and Prochiantz,A. (1996) J. Biol. Chem., 271, 18188–18193. 39.Vives,E., Brodin,P. and Lebleu,B. (1997) J. Biol. Chem., 272, 16010–16017. 40.Nagahara,H., Vocero-Akbani,A.M., Snyder,E.L., Ho,A., Latham,D.G., Lissy,N.A., Becker-Hapak,M., Ezhevsky,S.A. and Dowdy,S.F. (1998) Nat. Med., 4, 1449–1452. 41.Schwarze,S.R. and Dowdy,S.F. (2000) Trends Pharmacol. Sci., 21, 45–48. 42.Thoren, P. E., Persson, D., Karlsson, M., and Norden, B. (2000) FEBS Lett. 482, 265–268 43.Kramer, S. D., and Wunderli-Allenspach, H. (2003) Biochim. Biophys. Acta 1609, 161–169 44.Lundberg, M., Wikstrom, S., and Johansson, M. (2003) Mol. Ther. 8, 143–150 45.Richard, J. P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M. J., Chernomordik, L. V., and Lebleu, B. (2003) J. Biol. Chem. 278, 585–590 46.Suzuki T, Futaki S, Niwa M, Tanaka S, Ueda K, Sugiura Y. (2002). Possible existence of common internalization mechanisms among arginine-rich peptides. J Biol Chem;277:2437–2443. 47.Silhol M, Tyagi M, Giacca M, Lebleu B, Vives E. (2002). Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Eur J Biochem;269:494–501. 48.Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B. (2003). Cell penetrating peptides. Are evaluation of the mechanism of cellular uptake. J Biol Chem;278:585–590. 49.Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB. (2000). The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proc Natl Acad Sci USA;97:13003–13008. 50.Rothbard JB, Kreider E, VanDeusen CL, Wright L,Wylie BL, Wender PA. (2002). Arginine-rich molecular transporters for drug delivery: Role of backbone spacing in cellular uptake. J Med Chem;45:3612–3618. 51.Hallbrink M, Floren A, Elmquist A, Pooga M, Bartfai T, Langel U. (2001). Cargo delivery kinetics of cell penetrating peptides. Biochim Biophys Acta;1515:101–109. 52.Rusnati M, Tulipano G, Urbinati C, Tanghetti E, Giuliani R, Giacca M, Ciomei M, Corallini A, Presta M. (1998). The basic domain in HIV-1 Tat protein as a target for polysulfonated heparin-mimicking extracellular Tat antagonists. J Biol Chem;273:16027–16037. 53.Tyagi M, Rusnati M, Presta M, Giacca M. (2001). Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem;276:3254–3261. 54.Violini S, Sharma V, Prior JL, Dyszlewski M, Piwnica-Worms D. (2002). Evidence for a plasma membrane mediated permeability barrier to Tat basic domain in well-differentiated epithelial cells: Lack of correlation with heparan sulfate. Biochemistry;41:12652–12661. 55.ProchiantzA. (2000). Messenger proteins: Homeoproteins, TAT, and others. Curr Opin Cell Biol;12:400–406. 56.Kondo K, KaelinWG,Jr. (2001). The von Hippel-Lindau tumor suppressor gene. Exp Cell Res;264:117–125. 57.Pugh CW, Ratcliffe PJ. (2003). The von Hippel-Lindau tumor suppressor, hypoxia-inducible factor-1 (HIF-1) degradation, and cancer pathogenesis. Semin Cancer Biol;13:83–89. 58.Willam C, Masson N, Tian YM, Mahmood SA,Wilson MI, Bicknell R, Eckardt KU, Maxwell PH, Ratcliffe PJ, PughCW. (2002). Peptide blockade of HIFalpha degradation modulates cellular metabolism and angiogenesis. Proc Natl Acad Sci USA;99:10423–10428. 59.Schwarze SR, Hruska KA,Dowdy SF. (2000). Protein transduction: Unrestricted delivery into all cells?Trends Cell Biol;10:290–295. 60.Lundberg M, Johansson M. (2002). Positively charged DNA-binding proteins cause apparent cell membrane translocation. Biochem Biophys Res Commun;291:367–371. 61.Snyder EL, Dowdy SF. (2001). Protein/peptide transduction domains: Potential to deliver large DNA molecules into cells. Curr Opin Mol Ther;3:147–152. 62.Palmeri D, Malim MH. (1999). Importin beta can mediate the nuclear import of an arginine-rich nuclear localization signal in the absence of importin alpha. Mol Cell Biol;19:1218–1225. 63.Gorlich D, Mattaj IW. (1996). Nucleocytoplasmic transport. Science;271:1513–1518. 64.Truant R, Cullen BR. (1999). The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol Cell Biol;19:1210–1217. 65.Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. (1999). In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science;285:1569–1572. 66.Josephson L, Tung CH, Moore A,Weissleder R. (1999). High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem;10:186–191. 67.Vives E, Brodin P, Lebleu B. (1997). A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem;272:16010–16017. 68.Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y. (2001). Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem;276:5836–5840. 69.Bonifaci N, Sitia R, Rubartelli A. (1995). Nuclear translocation of an exogenous fusion protein containing HIV Tat requires unfolding. AIDS;9:995–1000. 70.Bergemann AD, Ma ZW, Johnson EM. (1992). Sequence of cDNA comprising the human pur gene and sequence specific single-stranded-DNA-binding properties of the encoded protein. Mol Cell Biol;12:5673–5682. 71.Darbinian N, Gallia GL, King J, Del Valle L, Johnson EM, Khalili K. (2001). Growth inhibition of glioblastoma cells by human Pur(alpha). J Cell Physiol;189:334–340. 72.Chen YN, Sharma SK, Ramsey TM, Jiang L, Martin MS, Baker K, Adams PD, Bair KW, Kaelin WG, Jr. (1999). Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc Natl Acad Sci USA;96:4325–4329. 73.Krek W, Xu G, Livingston DM. (1995). Cyclin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell;83:1149–1158. 74.Adams PD, Sellers WR, Sharma SK, Wu AD, Nalin CM, Kaelin WG, Jr. (1996). Identification of a cyclin-cdk2 recognition motif present in substrates and p21-like cyclin-dependent kinase inhibitors. Mol Cell Biol;16:6623–6633. 75.Lees JA, Saito M, Vidal M, Valentine M, Look T, Harlow E, Dyson N, Helin K. (1993). The retinoblastoma protein binds to a family of E2F transcription factors. Mol Cell Biol;13:7813–7825. 76.Sandgren S, Cheng F, Belting M. (2002). Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide. Role for cell-surface proteoglycans. J Biol Chem;277:38877–38883. 77.Astriab-Fisher A, Sergueev D, Fisher M, Shaw BR, Juliano RL. (2002). Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: Effects on cellular uptake, binding to target sequences, and biologic actions. Pharm Res;19:744–754. 78.PolyakovV, SharmaV, Dahlheimer JL, Pica CM, Luker GD, Piwnica-Worms D. (2000). NovelTat-peptide chelates for direct transduction of technetium-99m and rhenium into human cells for imaging and radiotherapy. Bioconjug Chem;11:762–771. 79.Bullok KE, Dyszlewski M, Prior JL, Pica CM, Sharma V, Piwnica-Worms D. (2002). Characterization of novel histidine-tagged tat–peptide complexes dual-labeled with (99m)tc-tricarbonyl and fluorescein for scintigraphy and fluorescence microscopy. Bioconjug Chem;13:1226–1237. 80.Bhorade R, Weissleder R, Nakakoshi T, Moore A, Tung CH. (2000). Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide. Bioconjug Chem;11:301–305. 81.Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL, Wender PA, Khavari PA. (2000). Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med;6:1253–1257. 82.Nori A, Jensen KD, Tijerina M, Kopeckova´ P, Kopecek J. (2003). Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. Bioconjug Chem;14:44–50. 83.Torchilin VP, Rammohan R, Weissig V, Levchenko TS. (2001). TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA;98:8786–8791. 84.Tseng YL, Liu JJ, Hong RL. Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: A kinetic and efficacy study. Mol Pharmacol 2002; 62:864–872. 85.Eguchi A, AkutaT, Okuyama H, SendaT,Yokoi H, Inokuchi H, Fujita S, Hayakawa T,Takeda K, Hasegawa M, Nakanishi M. (2001). Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J Biol Chem; 276:26204–26210. 86.Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R. (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol; 18: 410–414. 87.Wunderbaldinger P, Josephson L, Weissleder R. (2002). Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjug Chem; 13:264–268. 88.Zhao M, Kircher MF, Josephson L, Weissleder R. (2002). Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem; 13:840–844. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36953 | - |
| dc.description.abstract | 到目前為止,有許多文獻報導細胞穿透胜肽(cell penetrating peptide)或蛋白轉位領域(protein transduction domain)在遞送許多物質進入細胞,但是科學家們對於穿透性胜肽轉位進入細胞的機轉所知不多。由於穿透性胜肽本身為一個高極性的分子,所以可以快速、有效率的直接穿透細胞膜上的脂雙層(lipid bilayer),攜帶物質到達細胞質以及細胞核,所以我們為了想要了解穿膜的機轉,利用不同功能區塊的組合,建構了四個融合蛋白來驗證。包含streptavidin的核心區域(ST)、protein A的BC domain(PA)以及Tat domain。利用這些功能性的區塊,可以協助我們更加的了解穿透性胜肽在蛋白轉位作用當中所扮演的角色。利用流式細胞儀以及雷射共軛焦螢光顯微鏡研究是否Tat胜肽可以穿透不同種類的細胞以及不同時間內的作用。結果顯示Tat-PA-IgG以及Tat-PAST-IgG於短短的30分鐘內,在細胞中就有吞入螢光的訊號產生,隨著時間的增加,有越來越多的細胞其內含有螢光訊號且在6小時達到飽和。這樣的結果,到達一個門檻劑量之後,再隨著劑量的增高,對於Tat轉位效率也沒有顯著的增強。利用ATP抑制劑處理細胞,也沒有發現有抑制的效果,這讓我們知道Tat進出細胞是與能量無關的(energy-independent)。利用caveolae抑制劑nystatin,亦沒有顯著的抑制。最後利用macropinocytosis抑制劑amiloride(Na+/K+ pump inhibitor)處理細胞之後,對於穿透的效率也沒有影響。但是,在4oC的條件下,卻發現有抑制Tat融合蛋白進出細胞的效果,所以推測Tat蛋白進出細胞可能是藉由endocytosis的機轉。利用lipid raft的抑制劑methyl-βCD,也可以發現有抑制的效果。這也證實了我們所建構的Tat融合蛋白攜帶貨物遞送的路徑,可能是藉由lipid raft所傳導的內噬機轉。因此,本篇論文證明了Tat融合蛋白進入細胞的機制,其所衍生出來的多功能穿透性蛋白亦是一個相當有價值的工具平台,除了可以用來遞送高分子量以及一些特殊的物質進入各式各樣的細胞之外,同時也提供了一個快速純化多功能融合蛋白的技術平台。相信對於未來在蛋白質治療的研究上,會有相當大的助益。 | zh_TW |
| dc.description.abstract | Delivery of macromolecules mediated by cell penetrating peptides (CPPs) or protein transduction domains (PTDs) attracts a lot of interest due to its therapeutic and biotechnological potential. Despite significant progress in the cytoplasmic and nuclear delivery of various cargo molecules using PTDs, the underlying mechanisms remain under active debate. Because of CPPs are the high polar molecules, its can fast and efficiency direct translocation the lipid bilayer in the cell surface.
Internalization of proteins into mammalian cells is a useful method for analyzing and regulating cellular function. In this study, we developed a novel method for the delivery of cargos into cells using the TAT-fused protein. This fusion protein consists of three functional domains, the protein transduction domain of HIV-1 TAT;the B、C domain of staphylococcal protein A,which has an ability to bind to the IgG;and the core region of the streptavidin,which has an ability to bind to the biotinylation molecules. The TAT–PAST fusion protein was mixed with fluorescence-labeled rabbit IgG and added to cells. The internalization of antibody was analyzed using confocal microscopy and flow cytometry in living cells. As a result, fluorescence labeled IgG with the TAT–PAST fusion protein was observed intracellularly. Flow cytometry results demonstrated time course and dose dependence relationships of antibody internalization. we demonstrate that the entry of Tat-PAST peptide fusion protein into HeLa cells is serum-dependent、ATP-independent and temperature dependent, indicating the involvement of endocytosis. Specific inhibitors of lipid- raft-dependent endocytosis partially inhibit Tat-PAST fusion protein uptake, implicating this pathway in TAT peptide entry. In contrast, the caveolin-dependent pathway and macropinocytosis pathway are not essential for the uptake of Tat-PAST fusion protein. It proves to be a useful technique for screening functional proteins and peptides from cell or cell-free lysate without purification. Based on this possibility, we have developed a novel method for the internalization of antibodies using the TAT-fused protein. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:24:34Z (GMT). No. of bitstreams: 1 ntu-94-R92442005-1.pdf: 1806488 bytes, checksum: 9d4f2d40c62951a0f0c1f70ea0fb0c20 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 頁次
中文摘要………………………………………………………… 1 英文摘要………………………………………………………… 2 縮寫……………………………………………………………… 3 第一章 緒論………………………………………………………………… 4 第一節 細胞穿透性胜肽(Cell penetrating peptide)之簡介 1-1. HIV-1 Tat蛋白轉位區塊(protein transduction domain) 的起源 1-2. Tat蛋白的轉位作用(protein transduction)特性分析 1-3.利用Tat胜肽遞送物質進入細胞 1-4. 細胞穿透性胜肽的機轉探討 第二節 細胞穿透性胜肽之應用 第二章 實驗材料與方法…………………………………………8 第一節 穿透性融合蛋白的設計製造與純化 第二節 穿透性融合蛋白功能的測定 第三章 實驗結果…………………………………………………49 第一節 Protein A融合蛋白功能的測定 第二節 Tat-Protein A 融合蛋白功能的測定 第三節 Protein A-Streptavidin融合蛋白功能的測定 第四節 Tat-Protein A-Streptavidin融合蛋白功能的測定 第五節 穿透性融合蛋白Tat-PA攜帶螢光標定抗體在血清 存在與否之內噬作用比較 第六節 穿透性融合蛋白Tat-PA攜帶螢光標定抗體之內噬作用 第七節 穿透性融合蛋白Tat-PAST 攜帶螢光標定抗體之內噬 進入不同細胞 第八節 穿透性融合蛋白Tat-PAST攜帶螢光標定抗體之內噬作用 第九節 Tat-PAST攜帶含有doxorubicin的修飾微脂體,進行細胞毒性測試 第十節 穿透性融合蛋白Tat-PAST攜帶螢光標定抗體之內噬作用 與能量與劑量之關係 第十一節 穿透性融合蛋白Tat-PAST攜帶螢光標定抗體之內噬作用 與溫度之關係 第十二節 穿透性融合蛋白Tat-PAST攜帶螢光標定抗體之內噬作用 與caveolae抑制劑nystatin之作用影響 第十三節 穿透性融合蛋白Tat-PAST攜帶螢光標定抗體之內噬作用 與lipid raft抑制劑methyl-βCD之作用影響 第十四節 穿透性融合蛋白Tat-PAST攜帶螢光標定抗體之內噬作用 與macropinocytosis抑制劑amiloride之作用影響 第十五節 穿透性融合蛋白Tat-PAST攜帶螢光標定抗體與參與在clathrin傳遞 路徑中的運鐵蛋白在細胞中的分布。 第四章 討論………………………………………………………58 第一節 攜帶蛋白質遞送至細胞內之位置分析 第二節 血清對於Tat融合蛋白傳導蛋白轉位的影響 第三節 Tat胜肽對於不同細胞的蛋白轉位作用 第四節 運送微脂體&奈米螢光粒子進入細胞的應用 第五節 穿膜融合蛋白的毒性 第六節 穿透細胞膜運輸之機制探討 第七節 穿膜胜肽在蛋白治療法上的應用與潛力 第八節 未來展望 第五章 圖表與說明………………………………………………72 第六章 參考文獻…………………………………………………94 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蛋白轉位作用 | zh_TW |
| dc.subject | 穿透性胜肽 | zh_TW |
| dc.subject | cell penetrating peptide | en |
| dc.subject | Tat | en |
| dc.subject | protein transduction | en |
| dc.title | 穿透性胜肽媒介蛋白質進入細胞之機制探討 | zh_TW |
| dc.title | Molecular Analysis of Cell Penetrating Peptide-Mediated Transport of Cargo Proteins | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張智芬(Zee-Fen Chang),莊榮輝(Rong-Huay Juang) | |
| dc.subject.keyword | 穿透性胜肽,蛋白轉位作用, | zh_TW |
| dc.subject.keyword | cell penetrating peptide,protein transduction,Tat, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
