Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36938
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王暉(Huei Wang)
dc.contributor.authorMei-Chao Yehen
dc.contributor.author葉梅昭zh_TW
dc.date.accessioned2021-06-13T08:23:45Z-
dc.date.available2005-07-21
dc.date.copyright2005-07-21
dc.date.issued2005
dc.date.submitted2005-07-17
dc.identifier.citation[1] L. Verweyen, A. Tessmann, Y. Campos-Roca, M. Hassler, A. Bessemoulin, H. Tischer, W. Liebl, T. Grave, and V. Gungerich, “LMDS up- and down-converter MMIC,” in 2000 IEEE International Microwave Symposium Digest, vol. 3, pp. 1685-1688, June 2000.
[2] G. Torregrosa-Penalva, A. Asensio-Lopez, F. J. Ortega-Gonzalez, J. Lluch-Ladron-de-Guevara, “Low cost Ka band transmitter modules for LMDS equipment mass production,” in 2001 IEEE International Microwave Symposium Digest, vol. 2, pp. 953-956, May 2001.
[3] K. Ohata, T. Inoue, M. Funabashi, A. Inoue, Y. Takimoto, T. Kuwabara, S. Shinozaki, K. Maruhashi, K. Hosaya, and H. Nagai, “Sixty-GHz-band ultra-miniature monolithic T/R modules for multimedia wireless communication systems,” IEEE Trans. on Microwave Theory and Tech., vol. 44, no. 12, pp. 2354-2360, Dec.1996.
[4] T. Ninomiya, T. Saito, Y. Ohashi, and H. Yatsuka, “60-GHz transceiver for high-speed wireless LAN system,” in 1996 IEEE International Microwave Symposium Digest, vol. 2, pp. 1164-1171, May 1996.
[5] K. Miyatsuji, S. Nagata, N. Yoshikawa, K. Miyanaga, Y. Ohishi, D. Ueda, “A GaAs high-power RF single-pole double-throw switch IC for digital mobile communication system,” IEEE ISSCC1994 Dig. Tech. Papers, pp. 34-35.
[6] Feng-Jung Huang and Kenneth O, “A 0.5-um CMOS T/R switch for 900-MHz wireless applications,” IEEE J. Solid-State Circuits, vol. 36, pp. 486-492, May 2000.
[7] Aruna Ajjikuttira, Chester Lrung, Ee-Sze Khoo, Mark Choke, Rajinder Singh, “A fully-integrated CMOS RFIC bluetooth application,” IEEE ISSCC2001 Dig. Tech. Papers, pp. 198-199.
[8] Kenneth K.O, Xi Li, Feng-Jung Huang, and William Foley, “CMOS components for 802.11b wireless LAN applications,” IEEE RFIC Symp., pp.103-106, 2002.
[9] M. Madihian, L. Desclos, T. Drenski, “CMOS RF ICs for 900MHz-2.4GHz band wireless communication networks,” IEEE RFIC Symp., pp. 13-16, 1999.
[10] Zhenbiao Li, Hyun Yoon, Feng-Jung Huang, and Kenneth K. O, “5.8-GHz CMOS T/R switches with high and low substrate resistances in a 0.18-um CMOS process,” IEEE Microwave Wireless Comp. Lett., vol. 13, Jan 2003.
[11] Niranjan Talwalkar, C Patrick Yue, and S. Simon Wong, “An integrated 5.2GHz CMOS T/R switch with LC-tuned substrate bias,” IEEE ISSCC2003 Dig. Tech. Papers, pp. 362-363, 2003.
[12] Feng-Jung Huang, and Kenneth K. O, “Single-pole double-throw CMOS switches for 900-MHz and 2.4-GHz applications on p- silicon substrates,” IEEE J. Solid-State Circuits, vol. 39, pp. 35-41, January 2004.
[13] Takahiro Ohnakado, Satoshi Yamakawa, Takaaki Murakami, Akihiko Furukawa, Eiji Taniguchi Hiro-omi Ueda, Noriharu Suematsu, and Tatsuo Oomori, “21.5-dBm power-handling 5-GHz transmit/receive CMOS switch realized by voltage division effect of stacked transistor configuration with depletion-layer-extended transistors (DETs),” IEEE J. Solid-State Circuits, vol. 39, pp. 577-584, January 2004.
[14] M. J. Schindler and A. Morris, “DC-40 GHz and 20-40 GHz MMIC SPDT switches,” IEEE Trans. on Microwave Theory Tech., vol. MTT-35, no. 12, pp. 1486-1493, Dec. 1987.
[15] H. Mizutani, N. Funabashi, M. Kuzuhara, and Y. Takawama, “Compact DC-60 GHz HJFET MMIC switches using ohmic electrode-sharing technology,” IEEE Trans. on Microwave Theory and Tech., vol. 46, no. 11, pp. 1597-1603, Nov. 1998.
[16] H. Mizutani, and Y. Takayama, “A DC-60 GHz GaAs MMIC switch using novel distributed FET,” in 1997 IEEE International Microwave Symposium Digest, vol. 2, pp. 439-442, June 1997.
[17] H. Mizutani, and Y. Takayama, “DC-110 GHz MMIC traveling-wave switch,” IEEE Trans. on Microwave Theory and Tech., vol. 48, no. 5, pp. 840-845, May 2000.
[18] K.-Y. Lin, W.-H. Tu, P.-Y. Chen, H.-Y. Chang, H. Wang, and R.-B. Wu, “Millimeter-wave MMIC passive HEMT switches using traveling-wave concept,” IEEE trans. Microwave Theory and Tech., vol. 52, no. 8, pp. 1798-1808, Aug. 2004.
[19] H. M. Hsu, J. Y. Chang, J. G. Su, C. C. Tsai, S. C. Wong, c. W. Chen, K. R. Peng, S. P. Ma, C. H. Chen, T. H. Yeh, C. H. Lin, Y. C. Sun, and C. Y. Chang, “A 0.18-um foundry RF CMOS technology with 70-GHz ft for single chip system solutions,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1869-1872, 2001.
[20] C. H. Diaz, et al., “A 0.18-um CMOS Logic Technology with Dual Gate Oxide and Low-k Interconnect for High-Performance and Low-Power Applications,” IEEE VLSI Tech. Symp., pp. 11-12, 1999.
[21] Jia-Jiunn Ou, Xiaodong Jin, Ingrid Ma, Chenming Hu, and Paul R. Gray, “CMOS RF modeling for GHz communication IC’s,” 1998 Symposium on VLSI Circuits Digest, pp. 94-95, 1998.
[22] Mei-Chao Yeh, Ren-Chieh Liu, Zuo-Min Tsai and Huei Wang, “A miniature low-insertion-loss, high-power CMOS SPDT switch using floating-body technique for 2.4- and 5.8-GHz applications,” to appear in 2005 IEEE RFIC Symp..
[23] TSMC 0.18um mixed signal 1P6M+ MIM salicide 1.8V/3.3V design guideline.
[24] Mei-Chao Yeh, Zuo-Min Tsai, Kun-You Lin, Huei Wang, Chia-Yi Su, and Chih-Ping Chao, “A millimeter-wave wideband SPDT switch with traveling-wave concept using 0.13-um CMOS process,” to appear in 2005 IEEE MTT-S International Microwave Symposium Digest.
[25] J. Kim, W. Ko, S.-H. Kim, J. Jeong, and Y. Kwon, “A high-performance 40–85 GHz MMIC SPDT switch using FET-integrated transmission line structure,” IEEE Microwave and Wireless Component Lett., vol. 13, no. 12, pp. 505-507, Dec. 2003.
[26] D. Nayak, L.-T. Hwang, and I. Turlik, “Simulation and design of lossy transmission lines in a thin-film multichip package,” IEEE Trans. on Components, Packaging, and Manufacturing Technology, vol. 13, pp. 294-302, issue 2, June 1990.
[27] Mei-Chao Yeh, Zou-Min Tsai, and Huei-Wang, “A miniature DC to 50 GHz CMOS SPDT distributed switch,” accepted by 2005 European Microwave Conference.
[28] Sonnet user’s manual, Sonnet Software, Inc.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36938-
dc.description.abstract本論文目的在於研究使用互補式金氧半場效電晶體來設計應用於微波及毫米波頻段的切換器。論文中討論了兩種切換器的架構。為了模擬切換器的穿透損耗以及隔離度,也加以建立了簡化的被動電晶體小訊號模型。而非線性模型則是結合了電容和壓控電流源,可用來預測切換器的功率飽和的現象。
第一個將互補式金氧半場效電晶體切換器應用於無線通訊的方法是串聯-並聯架構。利用電晶體基極浮接的技巧可以減小穿透損耗以及提升功率特性。利用商用標準0.18-um的互補式金氧半場效電晶體製程,設計的串聯-並聯切換器在5.8 GHz可達到20 dBm的P1dB,1.1 dB的穿透損耗以及27 dB的隔離度。在2.4 GHz時,此切換器的穿透損耗為0.65 dB以及隔離度為35 dB。此切換器的有效面積只有0.03 mm2。量測值包括功率特性皆和模擬結果相近。
第二個將互補式金氧半場效電晶體切換器應用於毫米波頻段的方法是利用傳導波原理(traveling-wave concept)。使用商用標準0.13-um的互補式金氧半場效電晶體製程,設計了一個單刀雙擲寬頻切換器。利用傳導波原理可增加切換器的操作頻寬。為了因應傳送端及接收端不同的需求,此切換器使用了不對稱的架構。在接收端,此切換器達到小於2.7 dB的穿透損耗以及優於26 dB的隔離度。在傳送端,此切換器達到小於4.4 dB的穿透損耗以及優於14 dB的隔離度。在40 GHz時,此切換器在傳送端可達到13.8 dBm的P1dB。此晶片面積只有0.4 mm2。這是第一個將互補式金氧半場效電晶體使用於毫米波頻段的切換器。
本論文也描述了一個使用傳導波原理所設計的dc-50 GHz單刀雙擲切換器。此切換器是使用商用標準0.18-um的互補式金氧半場效電晶體製程。為了增加切換器的頻寬,前端四分之一波長的傳輸線換成一個串聯的電晶體。從dc到50 GHz,此切換器達到小於6 dB的穿透損耗以及優於38 dB的隔離度。此切換器亦達到17.4 dBm的P1dB在5.8 GHz和19.6 dBm的P1dB在40 GHz。此晶片面積只有0.25 mm2。這是第一個將互補式金氧半場效電晶體使用於dc到毫米波頻段的寬頻切換器。
zh_TW
dc.description.abstractThis purpose of the thesis is to develop the CMOS switches in microwave and millimeter wave frequency range. Two types of the switch topologies are investigated. The simplified small-signal model of passive FET is developed to simulate the insertion loss and isolation; while the nonlinear model which consists of capacitance and voltage-dependent current source is used to predict the power handling capability of the switch.
The first method to implement CMOS switch in wireless communication applications is the series-shunt topology. In order to reduce the insertion loss and increase the P1dB, the floating-body technique is used. The series-shunt switch in standard bulk 0.18-um CMOS process achieves a measured P1dB of 20 dBm, an insertion loss of 1.1 dB, and an isolation of 27 dB at 5.8 GHz. It also achieves a measured insertion loss of 0.65 dB and an isolation of 35 dB at 2.4 GHz. The effective chip size is only 0.03 mm2. The measured data agree with the simulation results well, including the power handling capability.
The second method to implement the CMOS switch is using traveling-wave concept. A wideband SPDT switch in standard bulk 0.13-um CMOS process is demonstrated. In order to extend the operation frequency, the traveling-wave circuit topology is utilized. Due to the different requirements in the transmit and receive paths, the switch is designed to be asymmetric. In the receive path, the switch achieves a measured insertion loss less than 2.7 dB, a measured isolation better than 26 dB from 27 to 50 GHz. On the other hand, for the transmit path, the switch also achieves a measured insertion loss less than 4.4 dB, and an isolation better than 14 dB from 30 to 63 GHz. At 40 GHz, a measured input P1dB of 13.8 dBm is attained. The chip size is only 0.8 x 0.5 mm2. The measured data agree with the simulation results well. This work is the first CMOS switch in millimeter-wave frequency range.
A dc-to-50-GHz SPDT switch using traveling-wave concept in standard bulk 0.18-um CMOS process is also implemented. Instead of the quarter wave length transmission lines, a series transistor can be used for the wide bandwidth operation. The switch achieves a measured insertion loss of less than 6 dB, a measured isolation of better than 38 dB from dc to 50 GHz. The measured input P1dB of 17.4 dBm at 5.8 GHz and 19.6 dBm at 40 GHz is attained. The chip size is only 0.5 x 0.5 mm2. This work is the first CMOS switch from dc to millimeter-wave frequency with a miniature chip size.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:23:45Z (GMT). No. of bitstreams: 1
ntu-94-R92942008-1.pdf: 835701 bytes, checksum: 75cae5a3e6a96ba579f1b643a4b53d5c (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsChapter 1 Introduction ……………….………..………………. 1
1.1 Motivation ……………………………………………………….. 1
1.2 Literature Survey ………………………………………………… 2
A. Microwave FET Switches …...………………………………. 2
B. Broadband FET Switches in Millimeter-Wave Region ……… 6
1.3 Contributions …………………………………………………….. 7
1.4 Chapter Outlines …………………………………………………. 9
Chapter 2 CMOS Device Modeling and MMIC Processes ..... 10
2.1 MMIC Processes ……………………………………………….. 11
2.2 DCIV Curves and S-Parameters Measurements ……………..… 12
2.3 Small-Signal Model …………………………………………….. 13
2.4 Nonlinear Model …………………………………………..…… 17
Chapter 3 Switches Using Body-Floating Technique ……...... 27
3.1 Body Floating Technique ……………………………………..... 28
3.2 Device Size Selection ………………………………………...… 34
3.3 Circuit Design and Measurement ………………………………. 37
3.4 Summary ……………………………………………………….. 45
Chapter 4 Millimeter-Wave SPDT Switch ……………..……. 47
4.1 Traveling-Wave Switch Concept ……………………………….. 48
4.2 Circuit Design ………………………………………………..… 52
4.3 Measured Results ………………………………………………. 55
4.4 Summary ……………………………………………………….. 63
Chapter 5 DC-50 GHz SPDT Switch ………..….……………. 64
5.1 Switch Topology ……………………………...……………….... 65
5.2 Circuit Design ………………………………………………….. 69
5.3 Simulation and Measured Results ……………………………… 71
5.4 Summary ……………………………………………………….. 76
Chapter 6 Conclusions …………………….………...………... 77
Reference ........................................................................................ 79
dc.language.isoen
dc.subject互補式金氧半場效電晶體zh_TW
dc.subject切換器zh_TW
dc.subject單刀雙擲zh_TW
dc.subjectCMOSen
dc.subjectswitchesen
dc.subjectSPDTen
dc.title互補式金氧半場效電晶體微波及毫米波切換器之研製zh_TW
dc.titleDesign of CMOS Microwave and Millimeter-Wave Switchesen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee詹益仁,陳怡然,陳咨吰,George D. Vendelin(George D. Vendelin)
dc.subject.keyword切換器,互補式金氧半場效電晶體,單刀雙擲,zh_TW
dc.subject.keywordswitches,CMOS,SPDT,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2005-07-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
816.11 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved