Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36920
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許博文
dc.contributor.authorTzung-Ming Laien
dc.contributor.author賴宗民zh_TW
dc.date.accessioned2021-06-13T08:22:47Z-
dc.date.available2005-07-26
dc.date.copyright2005-07-26
dc.date.issued2005
dc.date.submitted2005-07-18
dc.identifier.citationReferences
[1] S.Yano and A. Ishimaru,“A theoretical study of the input impedance of a circular microstrip disk antenna,” IEEE Trans. Antennas Propogat., vol. 29, no. 1, pp. 77-83, Jan. 1981.
[2] C. Baumer, “Analysis of slot coupled circular microstrip patch antenna,” Electron. Lett., vol. 28, no. 15, pp. 1454-1455, July. 1992.
[3] I-Jen Chen, Chung-Shao Huang and Powen Hsu,“Circular Polarized patch antenna array fed by coplanar waveguide,” accepted by IEEE Trans. Antennas and Propagation.
[4] T. Teshirogi, M. Tanaka, and W. Chujo, “Wideband circularly polarized array antenna with sequential rotations and phase shifts of element,” in Proc.Int. Symp. Antennas and Propagat., pp. 117-120, Japan, Tokyo, 1985.
[5] P. S. Hall, J. S. Dahele, and J. R. James, “Design principles of sequentially fed, wide bandwidth, circularly polarised microstrip antennas,” IEE Proc.-Microw. Antenna Propag., vol. 136, pp. 381-389, Aug. 1989.
[6] P. S. Hall, “Application of sequential feeding to wide bandwidth, circularly polarised microstrip patch arrays,” IEE Proc.-Microw. Antenna Propag., vol. 136, pp. 390-398, Aug. 1989.
[7] I. Morrow and J. R. James, “Sequentially rotated large bandwidth circularly polarised printed antenna,” Electron. Lett., vol. 31, pp. 2062-2064, 1995.
[8] W. K. Lo, C. H. Chan, and K. M. Luk, “Circularly polarised microstrip antenna array using proximity coupled feed,” Electron. Lett., vol. 34, pp. 2190-2191, 1998.
[9] L. Dussopt, Y. Toutain, J.-P. Coupez, and J.-M. Laheurte, “Circularly polarised microstrip arrays built on polymethacrylate imide foam,” Electron. Lett., vol. 36, pp. 1758-1759, 2000.
[10] C. A. Balanis, Antenna theory: analysis and design 2nd, John Wiley & Sons, New York, 1997.
[11] J. R. James, P. S. Hall, and C. Wood, Microstrip Antenna – Theory and Design. New York: Peter Peregrinus, 1981, Chap. 7.
[12] C. C. Hsu, “Analysis of CPW-fed circular patch antennas,” Master Thesis, National Taiwan University, 2001.
[13] K. Araki, and T. Itoh,“Hankel Transform domain analysis of open circular microstrip radiating structure,” IEEE Trans. Antennas Propogat., vol. AP-29, NO. 1, pp. 84-89, Jan. 1981.
[14] A. G. Derneryd,“Analysis of the microstrip disk antenna element,” IEEE Trans. Antennas Propogat., vol. AP-27, NO. 5, pp. 660-664, Sept. 1979.
[15] S. B. De Assis Fonseca and A. J. Giarola,“Microstrip disk antennas, Part I: Efficiency of space wave launching, ” IEEE Trans. Antennas Propogat., vol. AP-32, No.6,pp.561-567, June. 1984.
[16] S. B. De Assis Fonseca and A. J. Giarola,“Microstrip disk antennas, Part II: The problem of surface wave radiation by dielectric truncation,” IEEE Trans. Antennas Propogat., vol. AP-32, No.6,pp.568-573, June. 1984.
[17] L. C. Shen, S. A. Long, M. R. Allerding, and M. D. Walton, “Resonant frequency of a circular disk, printed-circuit antenna, ” IEEE Trans. Antennas Propogat., vol. AP-29, No.1,pp.84-89, Jan. 1981.
[18] M. Haneishi, T. Nambara, and S. Yoshida, “Study on ellipticity properties of single-feed type circularly polarized microstrip antenna,” Electronic Letters, vol. 18, No.5,pp191-193, Mar. 1982.
[19] E. T. Rahardjo, S. Kitao, and M. Haneishi, “Circularly polarized planar antenna excited by cross-slot coupled coplanar waveguide feeding,” IEEE AP-S.Digest, vol.3, pp.2220-2224, 1994.
[20] H. Iwasaki, and N.Chiba, “Circularly polarised back-to-back microstrip antenna with an omnidirectional pattern,” IEE Proc-Microw. Antenna Propag.,vol.146, No.4,pp.277-281, August 1999.
[21] Y. Turki, C. Migliaccio, and J. M. Laheurte,“Circularly polarised square patch antenna fed coplanar waveguide,” Electronic Letters,,vol.33,No.15,pp.1321-1323, July 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36920-
dc.description.abstract本論文中,我們主要是提出一種用微帶線饋入的圓極化微帶天線,經由模態分析法加以分析。首先將針對各式圓極化微帶天線進行介紹。
理論分析以共振腔模型為基礎,求解圓形微帶天線在共振腔中的模態。由模態分析的結果,可推導出在共振腔金屬面上的電流分布情形。而在本論文中是採直接饋入圓形微帶天線,但爲了增加頻寬和極化程度,經由結合循序旋轉的設計技巧,在此設計了微帶線饋入之圓形極化微帶線天線陣列。從模擬與量測結果當中,我們可以明顯的發現使用循序旋轉的技巧的 1x2 陣列天線,在頻寬上有明顯的提升。
由於本論文中所提出的天線是由微帶線所饋入,因此本身具有結構簡單,輕薄短小, 低姿態,易於與電路結合且製造的好處,故這些天線適合應用於高頻(毫米波)頻段。
zh_TW
dc.description.abstractIn this thesis, a circularly polarized patch antenna fed by a microstrip-line is designed for the 60GHz (V-Band) communication system. In order to increase the bandwidth and polarization purity, a wide bandwidth microstrip-line fed circularly polarized patch array is proposed by combining the principle of sequential rotation technique and the 90° phase delay line for spatial rotation.
Based on the cavity model, the Helmholtz’s equation is solved to obtain the modes exist in the circular cavity resonator. From the mode analysis results, the electric current distribution patterns on the patch and the ground plane are computed. Because we need increase the bandwidth and the polarization purity, a microstrip-line fed circularly polarized patch array is proposed by employing the principle of sequential rotation technique. The simulated and measured return losses are presented for an 1x2 array with and without sequential rotation technique. Significant increase in the return loss bandwidth is found in the array with sequential rotation.
Because the proposed antenna is fed by the microstrip-line, in addition to the advantages of simple structure, lightweight, low profile, easy to combine with the circuit, and fabricate, this antenna is especially suitable for millimeter-wave application.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:22:47Z (GMT). No. of bitstreams: 1
ntu-94-R92942013-1.pdf: 870987 bytes, checksum: 3aad1d70424d8be1951e4b13a2abeccb (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsChapter 1 Introduction…………………………………….. 1
1.1 Motivation and Literature Survey…………………1
1.2 Chapter Outlines…………………………………..4
Chapter 2 Analysis of Circularly Polarized Microstrip
Antenna………………………………..…………9
2.1 Various Types of Circularly Polarized Microstrip
Antenna………………………………………….. 9
2.1.1 Resonator Antenna………………………. 9
2.1.2 Traveling Wave Antenna……………….. 10
2.2 Theoretical Analysis Base On Cavity Model……. 11
2.2.1 Cavity Model…………………………….11
2.2.2 Electric and Magnetic Fields — TMz…. 12
2.2.3 Equivalent Current Densities and Field
Radiated………………………………… 14
2.3 Necessary Conditions for Circularly Polarized
Radiation……………………………………...… 15

III
Chapter 3 Design of CP Patch Antenna Fed by Microstrip
Line……….…………………………………… 29
3.1 Concept of Generating Circular Polarization……. 29
3.2 Mode Limiting Effect Relating to Current Pattern
on The Ground Plane…………………………31
3.3 Design of Circularly Polarized Patch Antenna
Fed by Microstrip Line…………………………. 34
3.3.1 Sequentially Rotated Feeding Technique… 35

3.3.2 Design CP Patch 1D Array Fed by Microstrip
Line at 5GHz……………………….…….. 36
3.3.3 Design Single Element CP Patch Antenna
Fed by Microstrip Antenna at 60GHz….... 37
3.3.4 Design CP Patch 1D Array Fed by Microstrip
Line at 60GHz…………………………… 38
Chapter 4 Conclusions…………..………………..…….… 62
Appendix A Simple Formula for Axial Ratio
Calculations………………………………….. 63

IV
Appendix B Derivation of the Equivalent Circuit for
CP Microstrip Antenna……………………... 71
References…………………………………………...………..76














V
List of Figures
Chapter 1
Fig. 1.1 Typical feeding approaches of patch antennas. (a) Coaxial feed,
(b) Aperture-coupled feed, (c) Microstrip line feed, and (d) CPW
feed ………………………………………………………….…8
Chapter 2
Fig. 2.1 Various types of circularly polarized antenna………………….19
Fig. 2.2 Two kinds of feeding network for dual-fed patch antenna……..20
Fig. 2.3 Geometry of circular microstrip patch antenna………………...21
Fig. 2.4 Cavity model and equivalent magnetic current density for
circular microstrip patch antenna…………………………...…22
Fig. 2.5 Typical polarization circle……………………………………...23
Fig. 2.6 Far field radiation approximation of arbitrary current sources...24
Fig. 2.7 Magnetic current distribution of circular patch antenna TM11…25
Fig. 2.8. Instantaneous magnetic current distribution plot of
circular patch antenna versus variable ………………...…26
VI
Chapter 3
Fig. 3.1(a) Equivalent circuit of linearly polarized circular microstrip
antenna………………………………………………………39
Fig. 3.1(b) Equivalent circuit of linearly polarized mode split into
two orthogonal modes………………………………………40
Fig. 3.2 Fundamental configuration of two singly-fed type CP
circular patch antenna……………………………………….41
Fig. 3.3 Surface current patterns on the ground plane of circular cavity,
TM11 mode and TM21 mode…………………………………42
Fig. 3.4 Surface current patterns on the ground plane of circular cavity,
TM31 mode and TM41 mode…………………………………43
Fig. 3.5 Surface current patterns on the ground plane of circular cavity,
TM02 mode and TM12 mode…………………………………44
Fig. 3.6 Sequentially rotated array feeding…………………………..45
Fig. 3.7 Configuration of the microstrip line fed 1×2 circularly
polarized circular patch array with sequentialy rotation……46
Fig. 3.8 Simulated and measured return losses and axial ratio of the
microstrip line fed 1×2 circularly polarized circular patch
array with sequential rotation against frequency…………..47

VII
Fig. 3.9 Simulated and measured radiation pattern of the microstrip line
fed 1×2 circularly polarized circular patch array without
sequential rotation patch antenna at 5.15GHz and 5.25GHz.... 48
Fig. 3.10 Simulated and measured radiation pattern of the microstrip line
fed 1×2 circularly polarized circular patch array without
sequential rotation patch antenna at 5.35GHz and 5.4GHz….. 49
Fig. 3.11 The measured gain comparisons of RHCP and LHCP
variations versus frequency………………………………….. 50
Fig. 3.12 Configuration of the microstrip line fed circular patch
antenna……………………………………………………….. 51
Fig. 3.13 Simulated return losses and axial ratio of the microstrip line fed
patch antenna against frequency……………………………... 52
Fig. 3.14 Simulated radiation pattern to of the patch antenna fed by
Microstrip line……………………………………………..…. 53
Fig. 3.15 Configuration of the microstrip line fed 1×2 circularly
polarized circular patch array………………………………... 54
Fig. 3.16 Simulated return losses and axial ratio of the microstrip line fed
1×2 circularly polarized circular patch array without sequential
rotation against frequency……………………………………55
Fig. 3.17 Simulated radiation pattern of the microstrip line fed 1×2
circularly polarized circular patch array without using
sequential rotation patch antenna at 60.5GHz……………….56
VIII
Fig. 3.18 Simulated and measured return losses of the microstrip line fed
1×2circularly polarized circular patch array with sequential
rotation against frequency……………………………………57
Fig. 3.19 Simulated axial ratio of the microstrip line fed 1×2 circularly
polarized circular patch array with sequential rotation against
frequency……………………………………………………..58
Fig. 3.20 Simulated radiation pattern of the microstrip line fed 1×2
circularly polarized circular patch array with using sequential
rotation patch antenna……………………………………….59
Fig. 3.21 Simulated radiation pattern of the microstrip line fed 1×2
circularly polarized circular patch array with using sequential
rotation patch antenna………………………………………60
Fig. 3.22 The measured gain comparisons of RHCP and LHCP
variations versus frequency arrays………………………….61
Fig. A.1 Combination of two quasi-linearly polarized signals……….67
Fig. B.1 Fundamental configuration of singly-fed rectangular patch..74
Fig. B.2 Equivalent circuit for rectangular circularly polarized
antenna………………………………………………………75



IX
List of Tables
Chapter 1
Table 2-1 The zeros of the derivative of the Bessel function
…………………………………………………27
Table 2-2 The zeros, , of the first ten modes in ascending order,
mode indices and numbers of maximum field…………..28
Table 4-1 The comparison between arrays with and without sequential
rotation………………………………………………….62
Table A-1 Comparison between approximate and exact AR of CP
wave with perfectly polarized radiating elements………68
Table A-2 Comparison between approximate and exact AR of CP
wave with same-sense quasi-linearly polarized radiating
elements…………………………………………………70
dc.language.isoen
dc.subject微帶天線zh_TW
dc.subject圓極化zh_TW
dc.subjectPatch Antennaen
dc.subjectCircularly Polarizeden
dc.title60GHz微帶線饋入圓極化微帶天線zh_TW
dc.title60GHz Circularly Polarized Patch Antenna Fed By Microstrip-Lineen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江簡富,張知難,張道治,林怡成
dc.subject.keyword圓極化,微帶天線,zh_TW
dc.subject.keywordCircularly Polarized,Patch Antenna,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2005-07-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
850.57 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved