請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36890完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張所鋐 | |
| dc.contributor.author | Chi-Yao Chen | en |
| dc.contributor.author | 陳麒堯 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:21:12Z | - |
| dc.date.available | 2007-07-26 | |
| dc.date.copyright | 2005-07-26 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-19 | |
| dc.identifier.citation | [1] 陳貴賢等, “一維奈米材料的研究,” 物理雙月刊, 廿三卷三期, pp. 609-613, 2001年12月.
[2] Xuanjun Zhang et al., “1-D Coordination Polymer Template Approach to CdS and HgS Aligned-nanowire Bundles,” New J. Chem., Vol. 27, pp. 827-830, 2003. [3] R.W. Stark et al., “Determination of Elastic Properties of Single Aerogel Powder Particles with the AFM,” Ultramicroscopy, Vol. 75, pp. 161-169, 1998. [4] M. S. Bischel et al., “On the Use of Nanoscale Indentation with the AFM in the Identification of Phase in Blends of Linear Low Density Polyethylene and High Density Polyethylene,” J. Mater. Sci., Vol. 35, No. 1, pp. 221-228, 2000 [5] D. Raghavan et al., “Characterization of Heterogeneous Regions in Polymer Systems Using Tapping Mode and Force Mode Atomic Force Microscopy,” Langmuir, Vol. 16, pp. 9448-9459, 2000. [6] Binyang Du et al., “Study of Elastic Modulus and Yield Strength of Polymer Thin Films Using Atomic Force Microscopy,” Langmuir, Vol. 17, pp. 3286-3291, 2001. [7] C. M. Lieber et al., “Functional Group Imaging by Chemical Force Microscopy,” Science, Vol. 265(5181), pp. 2071-2074, 1994. [8] E. Wong et al. “Nanobeam Mechanic: Elasticity, Strength, and Toughness of Nanorod and Nanotubes,” Science, Vol. 277, No. 26, pp. 1971-1975, 1997. [9] E. tan et al., “Physical Properties of A Single Polymeric Nanofiber,” Appl. Phys. Lett., Vol. 84, No. 9, pp.1603-1605, 2004. [10] A. Kis et al., “Shear and Young’s Moduli of MoS2 Nanotube Ropes,” Adv. Mater., Vol. 15, No. 9, pp.733-736, 2003. [11] J. Salvetat et al., “Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes,” Adv. Mater., Vol. 11, No. 2, pp.161-165, 1999. [12] Xiaodong Li et al., “Nanoindentation of Silver Nanowires,” Nano Lett., Vol. 3, No. 11, pp. 1495-1498, 2003. [13] Ken Gall et al., “The Strength of Gold Nanowires,” Nano Lett., Vol. 4, No. 12, pp. 2431-2436, 2004. [14] Stéphane Cuenot et al., “Elastic Modulus of Polypyrrole Nanotubes,” Phys. Rev. Lett., Vol. 85, No. 8, pp. 1690-1693, 2000. [15] Stéphane Cuenot et al., “Measurement of Elastic Modulus of Nanotubes by Resonant Contact Atomic Force Microscopy,” J. Appl. Phys., Vol. 93, No. 9, pp. 5650-5655, 2003. [16] Stéphane Cuenot et al., “Surface Tension Effect on the Mechanical Properties of Nanomaterials Measured by Atomic Force Microscopy,” Phys. Rev. B, Vol. 69, 165410, 2004. [17] Zhong L. Wang et al., “Nano-Scale Mechanics of Nanotubes, Nanowires, and Nanobelts,” Adv. Eng. Mater., Vol. 3, No. 9, pp. 657-661, 2001. [18] H. Hertz, J. Reine and Angewandte Mathematik, Vol. 92, 1882. [19] J. Boussinesq, Applications des Potentiels a l’etude de l’equilibre et du movement des solides elastiques, 1885. [20] D Tabor, “A Simple Theory of Static and Dynamic Hardness,” Proc. R. Soc. A192, pp. 247-273, 1948. [21] I. N. Sneddon, “The Relation Between Load and Penetration in The Axisymmetric Boussinesq Problem for A Punch of Arbitrary Profile,” Int. J. Engng. Sci., Vol. 3, pp. 47-57, 1965. [22] W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., Vol. 7, No. 6, pp. 1564-1583, 1992. [23] G. M. Pharr, W. C. Oliver and F. R. Brotzen, “On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation,” J. Mater. Res., Vol. 7, No. 3, pp. 613-617, 1992. [24] J. G. Swadener et al., “The Correlation of the Indentation Size Effect Measured with Indenters of Various Shapes,” J. Mech. Phys. Solids, Vol. 50, pp. 681-694, 2002. [25] A. A. Elmustafa et al., “Indentation Size Effect in Polycrystalline F.C.C. Metals,” Acta Materialia, Vol. 50, pp. 3641-3650, 2002. [26] H. T. Yang et al., “A Generalized Load-Penetration Relation for Sharp Indenters and the Indentation Size Effect,” ASME, Vol. 69, pp. 394-396, 2002. [27] B. Ya. Farber et al., “Size Effect and Time-Dependent Nanohardness of ZrO2-based Ceramics,” Phys. Solid State, Vol. 43, No. 11, pp. 2105-2109, 2001. [28] M. I. Baskes et al., “Interpretations of Indentation Size Effects,” ASME, Vol. 69, pp. 433-441, 2002. [29] W. D. Nix et al., “Indentation Size Effects in Crystalline Materials: A Law for Strain Gradeint Plasticity,” J. Mech. Phys. Solids, Vol. 46, pp. 411-425, 1998. [30] M. V. Swain et al., “Influence of Thickness and Substrate on the Hardness and Deformation of TiN Films,” Thin Solid Films, Vol. 270, pp. 283-288, 1995. [31] M. V. Swain et al., “Investigation of the Stresses and Stress Intensity Factors Responsible for Fracture of Thin Protective Films during Ultra-micro Indentation Tests with Spherical Indenters,” Thin Solid Films, Vol. 286, pp. 111-121, 1996. [32] J. L. He and S. Veprek, “Finite Element Modeling of Indentation into Super Hard Coatings,” Surface and Coating Technology, Vol. 163-164, pp. 374-379, 1995. [33] J. Lesage et al., “Absolute Hardness of Films and Coatings,” Thin Solid Films, Vol. 254, pp. 123-130, 1995. [34] J. Lesage et al., “Hardness Measurements of Ti and TiC Multi – layers: A Model,” Thin Solid Films, Vol. 359, pp. 228-235, 2000. [35] T. F. Page et al., “On the Hardness of Coated Systems,” Surface and Coating Technology, Vol. 99, pp. 171-183, 1998. [36] Shefford P. Baker, “Between Nanoindentation and Scanning Force Microscopy: Measuring Mechanical Properties in the Nanometer Regime,” Thin Solid Films, Vol. 308-309, pp. 289-296, 1997. [37] S. K. Biswas, “Estimation of Hardness by Nanoindentation of Rough Surfaces,” J. Mater. Res., Vol. 13, pp. 3227-3233, 1998. [38] B. Bhushan, Handbook of Micro/Nanotribology, 2nd Edition, CRC Press, BocaRaton, 1999. [39] A. H. W. Ngan et al., “Effects of Creep and Thermal Drift on Modulus Measurement Using Depth-sensing Indentation,” J. Mater. Res., Vol. 17, No. 3, pp. 660-668, 2002. [40] B. Tang et al., “Viscoelastic Effects during Unloading in Depth-sensing Indentation,” J. Mater. Res., Vol. 17, No. 10, pp. 2604-2610, 2002. [41] Robert F. Cook et al., “Load-displacement Behavior during Sharp Indentation of Viscous-elastic-plastic Materials,” J. Mater. Res., Vol. 18, No. 1, pp. 139-150, 2003. [42] W. D. Nix et al., “Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-sensing Indentation Experiments,” J. Mater. Res., Vol. 13, No. 5, pp. 1300-1306, 1998. [43] G. M. Pharr et al., “Influences of Pile-up on the Measurement of Mechanical Properties by Load and Depth Sensing Indentation Techniques,” J. Mater. Res., Vol. 13, No. 4, pp. 1049-1058, 1998. [44] S. Suresh et al., “Determination of Elasto-plastic Properties by Instrumented Sharp Indentation,” Scripta Materiala, Vol. 40, No. 10, pp. 1191-1198, 1999. [45] 周淑婷, “氮氧化矽絕緣層其光致發光及拉曼光譜與MOS結構電容-電壓量測之研究,” 國立中山大學物理研究所碩士論文, 中華民國九十二年六月. [46] H. Dai et al., “Low-Temperature Synthesis of Single-Crystal Germanium Nanowires by Chemical Vapor Deposition,” Angew. Chem. Int. Ed., Vol. 41, No. 24, pp. 4783-4786, 2002. [47] R. L. Rosas et al., “Conformational Analysis and Vibrational Spectra of Isopropyl Formate and Some Deuterated Isotopomers,” J. Raman Spectroscopy, Vol. 24, pp. 143-165, 1993 [48] http://www.matweb.com [49] R. M. Nieminen et al., “Nanoindentation of Silicon Surface: Molecular Dynamics Simulations of Atomic Force Microscopy,” Phys. Rev. B, Vol.61, No.4, pp. 2973-2980, 2000 [50] A. Kelly and N. H. MacMillan, Strong Solids 3rd Editon, Oxford Science Publications, 1986. [51] Ranjana Saha, William D. Nix, “Effects of Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation,” Acta Materialia, Vol. 50, pp. 23-38, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36890 | - |
| dc.description.abstract | 在奈米科技的潮流下,各式各樣新穎的奈米材料接二連三的出現。但面對這些嶄新且近乎一無所知的奈米材料,其性質測定成了最重要的課題。而在眾多的研究中,有不少的資料指出材料的彈性模數將隨著尺寸的縮小而有著大幅度的變化。
本文利用奈米科技中最重要的工具之一-原子力顯微鏡對最尖端的奈米材料-鍺奈米線進行機械性質的測定。使用的技術分別是奈米壓痕技術及三點彎曲測試法。 此兩項技術雖然看似相差很遠,但最基本的觀念皆是針對待測材料施以壓力,使之變形。而原子力顯微鏡便兼具了奈米世界的眼睛及手指兩項功能,使這兩項實驗方法能夠實行。而在實際操作上,需先針對原子力顯微鏡本身進行一連串的校正,讓所得數值儘量接近事實。而之後便針對鍺奈米線進行壓印,並對所得線型進行分析計算,即可得到材料之模數。兩種方法最大的差別即在於分析方法的不同。在大量的實驗後,兩種實驗方法得到了類似的結果,也就是隨著鍺奈米線的線徑漸縮,其模數逐漸上昇,由小至大可差到七倍之多。但兩套實驗方法所得結果仍有一段不小的差異,原因可能在於實驗動作上的誤差及試料製備上的瑕疵。故此實驗方法尚須進一步的改進。 雖然結果不一定如人意,但本文導入的兩套針對奈米材料之機械性質測定法,相信對於後續之材料研究有所影響。 | zh_TW |
| dc.description.abstract | In the tide of nanotechnology, all kinds of nano-materials appeals. Face of the brand new and clueless nano-materials, properties measuring plays the most important role in research. Within the great deal of researches, there are many evidences that the modulus will vary greatly with the reduction of dimensions.
We’ll use AFM, the most important tool in nanotechnology, to measure the mechanical properties of germanium nanowires, the most advanced nano-material. We’ll use “nano-indentation” and “three point bending test” to do the work. It seems that the two techniques are definitely different, but the basic concepts of them are the same, to press the material and make it changing the shape. AFM plays two roles in nano-world, eyes and fingers, to make the experiment methods to be done. In practice, we need to calibrate several parameters of the AFM, to make the results close to the truth. After the calibration, we indent the Ge nanowires and analyze the curves from indentation to get the modulii. The most difference between two methods is analyzing method. After a large quantities of experiments, two methods got similar results, the modulus rises with the radius reduces. But the values of them are discrepancy. The reasons may comes from the inaccuracy of experiment and the blemishes of sample production. So the experiment methods still need further improvement. Although the results are not as perfect as predict, the two mechanical properties measuring methods used here will influence the coming material research. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:21:12Z (GMT). No. of bitstreams: 1 ntu-94-R92522610-1.pdf: 5110585 bytes, checksum: dd77ad457673c35a32bf4bf41f85250a (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 誌謝
中文摘要.........................................................................................................i 英文摘要........................................................................................................ii 目錄...............................................................................................................iv 圖例目錄......................................................................................................vii 表格目錄......................................................................................................xii 第一章 緒論.................................................................................................1 1.1 前言................................................................................................1 1.2 研究動機與目標............................................................................4 第二章 文獻回顧........................................................................................6 2.1 一維奈米材料製備........................................................................6 2.2 楊氏模數測定及與尺寸之關係....................................................8 2.2.1 利用原子力顯微鏡進行楊氏模數測定................................8 2.2.2 模數與尺寸之關係..............................................................12 2.3 奈米壓痕技術..............................................................................17 2.3.1 基礎理論..............................................................................17 2.3.2 實驗誤差因素......................................................................23 2.3.2.1 壓印尺寸效應.........................................................23 2.3.2.2 基材效應.................................................................25 2.3.2.3 表面粗糙度效應.....................................................26 2.3.2.4 黏彈性質效應.........................................................26 2.3.2.5 熱漂移效應.............................................................28 2.3.2.6 壓痕邊緣之堆積與下沉效應.................................28 2.4 拉曼頻譜分析..............................................................................31 第三章 實驗材料、設備與架構................................................................33 3.1 實驗材料介紹..............................................................................33 3.1.1 鍺奈米線..............................................................................33 3.1.2 基材製備..............................................................................37 3.1.2.1 藍寶石晶圓.............................................................37 3.1.2.2 溝槽結構.................................................................38 3.2 試片製備......................................................................................41 3.3 實驗設備......................................................................................44 3.3.1 AutoProbe M5......................................................................44 3.3.2 Digital Instrument MultiMode.............................................45 3.3.3 T64000 三重分光微光譜系統(拉曼頻譜分析儀)...........46 3.4 實驗架構......................................................................................49 3.4.1 原子力顯微鏡奈米壓痕......................................................49 3.4.1.1 動作流程.................................................................49 3.4.1.2 原子力顯微鏡壓印圖形解說.................................50 3.4.1.3 原子力顯微鏡壓印系統數學模型.........................53 3.4.2 三點彎曲測試......................................................................57 3.4.2.1 動作流程.................................................................57 3.4.2.2 三點彎曲數學模型.................................................58 第四章 實驗參數及常數校正...................................................................61 4.1 轉換常數校正..............................................................................61 4.1.1 校正方法..............................................................................61 4.1.2 校正計算結果......................................................................62 4.2 接觸面積函數..............................................................................66 第五章 實驗結果與討論...........................................................................72 5.1 鍺奈米線圖形分析......................................................................72 5.2 線徑-模數關係..........................................................................84 5.2.1 利用原子力顯微鏡奈米壓痕技術......................................84 5.2.2 利用三點彎曲測試法..........................................................89 5.3 拉曼頻譜分析..............................................................................91 5.4 結果分析......................................................................................93 5.4.1 原子力顯微鏡奈米壓痕試驗..............................................93 5.4.2 三點彎曲測試法..................................................................97 第六章 結論與未來展望.........................................................................100 6.1 結論............................................................................................100 6.2 未來展望....................................................................................103 Reference....................................................................................................104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 彈性模數 | zh_TW |
| dc.subject | 鍺奈米線 | zh_TW |
| dc.subject | 原子力顯微鏡 | zh_TW |
| dc.subject | 三點彎曲 | zh_TW |
| dc.subject | 奈米壓痕 | zh_TW |
| dc.subject | Nano Indentation | en |
| dc.subject | AFM | en |
| dc.subject | Ge nanowires | en |
| dc.subject | Elastic Modulus | en |
| dc.subject | Three Point Bending | en |
| dc.title | 以實驗法測定鍺奈米線線徑與機械性質之關係 | zh_TW |
| dc.title | Characterize the Relationship between Diameter and Mechanical Properties of Ge Nanowires with Experimental Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張家歐,鍾添東 | |
| dc.subject.keyword | 鍺奈米線,彈性模數,奈米壓痕,三點彎曲,原子力顯微鏡, | zh_TW |
| dc.subject.keyword | Ge nanowires,Elastic Modulus,Nano Indentation,Three Point Bending,AFM, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 4.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
