Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3689
標題: 以混合車流模型為基礎之最佳路網避障路徑規劃
The Optimal Route Planning for Road Network with
Obstacles Using a Mixed-fleet Traffic Model
作者: Pao-An Chen
陳柏安
指導教授: 詹魁元(Kuei-Yuan Chan)
關鍵字: 智慧交通系統,細胞自動機,車輛避障,車流模擬,路網模擬,最佳路徑,
Intelligent Transportation System (ITS),Cellular Automaton (CA),Obstacle avoidance,Traffic flow,Network simulation,Optimization path,
出版年 : 2016
學位: 碩士
摘要: 因應社會與科技的進步以及都市人口的快速增長與集中所造成的都市交通問題,各國開始進行智慧交通系統(ITS)的整合規劃。透過政策的制定、電子化交通系統設備與自主駕駛車輛的開發,期望能藉由中央管理之高效率的智慧交通路網達到安全又環保。本研究以細胞自動機(CA)為基礎的車流模型,建構符合台灣都市交通狀況的多線道汽機車混合車流擬真模型。利用此模型探討障礙對車流的影響,找出可以改善車流狀態車輛最佳避障策略。單路避障方法至都市路網模型,透過以道路權重為依據的Dijkstra演算法找出路網避障的最佳策略,進而提升整體路網的行車效率。最後經由模擬的得出,在單路避障的最佳化結果可以使到路車流量獲得改善,車輛密度在30至60%的情況下,可以大約提升20至40%的車流量。而在路網避障的最佳路徑規劃,車輛在為了避開障礙而選擇花費時間較少之路徑行駛,雖會延長移動距離,在不考慮因路徑改變導致道路車輛密度增加的話,特定狀況可節省大約60%旅行時間,若考慮車流密度變化則節省約4%的時間。
Urban traffic has faced a much greater challenge with the increase of vehicle population as society and technology advance. Modern intelligence transportation system (ITS) combines state-of-the-art communication and sensing techniques to provide a more efficient, more economic, and safer on-road environment. This research investigates the advantages of a centralized ITS management strategy with autonomous vehicle and develop a method to provide efficient traffic operation of mixed fleets when on-road obstacles are present. We use a refined cellular automata traffic model to better capture the characteristics of multi-lane mixed-fleet driving behaviors, such as lane-splitting and overtaking, in Taipei. An optimization is formulated to obtain the best obstacle avoidance strategy to maintain high traffic flow in a single road. Results show that with our method, an obstacle that usually cause serious congestion can improve the traffic flow by 20% (for 30% vehicle density) to 40% (for 60% vehicle density). We further extend the single-lane obstacle avoidance strategy to a network with multiple roads. Dijkstra algorithm is used to search for the minimal traveling time in network while each road could potentially occupied by multiple obstacles. Compared with being stocked on the original driving path, our method can suggest a new path with 60% less travel time. Our proposed method has the potential to include traffic lights or complex driving conditions for more effective and practical ITS in the future.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3689
DOI: 10.6342/NTU201602744
全文授權: 同意授權(全球公開)
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf8.85 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved