請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36838
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃天偉(Tian-Wei Huang) | |
dc.contributor.author | Hsiao-Wei Chen | en |
dc.contributor.author | 陳孝威 | zh_TW |
dc.date.accessioned | 2021-06-13T08:18:32Z | - |
dc.date.available | 2005-07-22 | |
dc.date.copyright | 2005-07-22 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-19 | |
dc.identifier.citation | [1] D. B. Leeson, “A Simple Model of Feedback Oscillator Noise Spectrum,” Proc. IEEE, Vol. 54, pp. 329-330, February 1966.
[2] J. C. Nallatamby, M. Prigent, M. Camiade, and J. J. Obregon, “Extension of Leeson Formula to Phase Noise Calculation in Transistor Oscillators with Complex Tanks,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, No. 3, March 2003. [3] J. C. Nallatamby, M. Prigent, M. Camiade, and J. J. Obregon, “Phase Noise in Oscillators—Leeson Formula Revisted,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, No. 4, April 2003. [4] Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, “Dispersion Characteristics of Substrate-integrated Rectangular Waveguide,” IEEE Microwave Wireless Compon. Lett., col. 12, pp. 333-335, September 2002. [5] H. Uchimura, T. Takenoshita, M. Fujii, “Development of the Laminated Waveguide,” IEEE Microwave Symposium, Vol. 3, pp. 1811-1814, June 1998 [6] W. C. Lee, S. C. Lin, and C. K. C. Tzang, “Planar Realization of Low Phase Noise 15/30 GHz Oscillator/Doubler Using Surface Mount Transistors,” IEEE Microwave and Wireless Components Letters, vol. 13, No. 1, pp.10-12, January 2003 [7] Y. Cassivi and K. Wu, “Low Cost Microwave Oscillator Using Substrate Integrated Waveguide Cavity,” IEEE Microwave and Wireless Components Letters, vol. 13, No. 2, pp.48-50, February 2003 [8] J. Hirokawa, and M. Ando, “Single-layer Feed Waveguide Consisting of Posts for Plane TEM Wave Excitation in Parallel Plates,” IEEE Trans. Antennas Propagat., vol. 46, no. 5, pp. 625-630, May 1998. [9] E. Y. Sun and S. H. Chao, “Unloaded Q Measurement—The Critical Points Method,” IEEE Trans. On Microwave Theory and Tech., vol. 43, No. 8, August 1995. [10] R. S. Kwok and J. F. Liang, “Character of High-Q Resonators for Microwave-Filter Applications,” IEEE Trans. On Microwave Theory and Tech., vol. 47, No.1, January 1999. [11] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Inpedance-matching Networks, and Coupling Structures, Dedham MA: Artech House, pp. 660-662, 1980. [12] D. Deslandes and K. Wu, “Integrated Microstrip and Rectangular Waveguide in Planar Form,” IEEE Microwave Wireless Compon. Lett., vol. 11, pp. 68-70, February 2002. [13] D. Desland and K, Wu, “Integrated Transition of Coplanar to Rectangular Waveguides,” IEEE Int. Microwave Symp. Dig., vol. 2, pp. 619-622, 2001. [14] S. Mass, J. Delacueva, J. Li, and S. White, “Technical Feature: A Low Cost Cavity Stabilized 5.8 GHz Oscillator Realized in LTCC,” Microwave Journal, April 2001. [15] D. M. Pozar, Microwave Engineering, 2nd ed., John Wiley & Sons, Inc., 1998. [16] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, 2nd ed., Prentice Hall, Inc., 1996. [17] B. Razavi, “RF Microelectronics,” Prentice-Hall, Inc., 1998. [18] A. Hajmiri and T.H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE Journal of Solid-state Circuits, vol. 33, No. 2, February 1998 [19] S. Vora and L. Larson, “Noise Power Optimization of Monolithic CMOS VCOs,” IEEE RFIC Sym., pp. 167-170, 1999. [20] P. Andreani and S. Mattison, “A 2.4 GHz CMOS Monolithic VCO Based on an MOS Varactor,” IEEE Proceedings of ISCAS, vol. 2, pp. 557-560, 1999. [21] C.C. Ho, C.W. Kuo, C.C. Hsiao and Y.J. Chan, “A 2.4 GHz Low Phase Noise VCO Fabricated by 0.18 pMOS Technologies,” IEEE VLSI Technology, Systems and Application Sym., pp.144-146, 2003 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36838 | - |
dc.description.abstract | 本論文使用基板合成波導共振腔來設計一頻段於2.4 GHz振盪器。利用基板合成波導共振腔平面化結構與高附載品質因素的特性,我們可以低成本製作出具有低相位雜訊振盪器。
此外,在本篇論文之中,我們也進行品質因素對相位雜訊效應的檢驗。根據1966年由D. B. Leeson所提出的相位雜訊模型,其預估當諧振器的負載品質因素每增加一倍時,振盪器的相位雜訊將相對具有6 dB的衰減。由於品質因素取決於諧振器的板材損耗與匹配電路,因此我們可以在不同板材上製作振盪器以獲得具有不同品質因素的設計。製作在板材RO4003(QL=91.81)的設計,所量測的相位雜訊在偏移100kHz為-110.2 dBc/Hz,在偏移1MHz為-127 dBc/Hz;相對於在板材RO3003(QL=42.91)與FR4(QL=21.44)的設計,分別具有6dB與11dB的衰減。利用這些具有同架構但在不同板材的設計,我們可以在量測結果與由模型所計算出的預估值上得到相同的趨勢,因此,成功地驗證品質因素與相位雜訊的關係。 | zh_TW |
dc.description.abstract | This thesis presents a design of 2.4 GHz oscillators by using substrate-integrated waveguide cavities. With the planar structure and high-Q characteristic of SIW cavity, we could design the low phase noise oscillator in low-cost production.
Besides, the effect of Q-factor to phase noise is examined in this thesis. According to the phase noise model proposed by D.B. Leeson in 1966, it estimates about 6 dB reductions in phase noise as Q-value of resonator doubled. Since the Q-factor depends on the cavity substrate loss and matching conditions, we could design oscillators on different substrates with different Q-values of SIW cavity resonators. The measured phase noise of the design on RO4003 (QL=91.81) is approximated as -110.2 dBc/Hz at 100 kHz offset, and -127 dBc/Hz at 1 MHz offset with 6 dB reductions comparing to the design on RO3003 (QL=42.91) and 11 dB reductions comparing to the design on FR4 (QL=21.44). By using these oscillators in the same parallel feedback structure, we could obtain the same tendencies between measurements and computed values from the proposed model and thus verified the relation between Q-factor and phase noise. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T08:18:32Z (GMT). No. of bitstreams: 1 ntu-94-R92942017-1.pdf: 1454958 bytes, checksum: 063c2683d4eb3168e252118c11405e72 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | List of Contents
Abstract Chapter 1 Introduction 1 1.1 Motivation…………………………………………………………...1 1.2 Relative Research Background ……………………………………...2 1.3 Chapter Outline……………………………………………………...4 Chapter 2 Substrate-integrated Cavity Resonator 5 2.1 Introduction………………………………………………………....5 2.2 Quality Factor…………………………………………………….... 6 2.2.1 One-port Reflection Type…………………………………. 6 2.2.2 Two-port Transmission Type……………………………..10 2.2.3 Verification of Two Methods……………………………..11 2.3 Substrate-integrate Cavity Resonator Design…………………….. 13 2.3.1 Decision of Resonant Frequency………………………... 13 2.3.2 Analysis of Feeding Geometry………………………….. 15 2.3.3 Design of Feeding Configuration………………………...23 Chapter 3 Theories of Oscillator Design 25 3.1 Introduction……………………………………………………….. 25 3.2 Oscillator Condition……………………………………………… 26 3.2.1 Feedback Oscillators…………………………………….. 26 3.2.2 Reflection Oscillators…………………………………….27 3.3 Noise…………………………………………………………….…32 3.3.1 Types of Noise………………………………………….... 32 3.3.2 Noise in Transistors………………………………….…... 36 3.4 Phase Noise………………………………………………….……. 39 Leeson’s Linear Time Invariant Model…………………….……40 Ali’s Linear Time Variant Model………………………….……. 42 3.5 Oscillator Configurations ………………………………….………48 Chapter 4 Designs of Substrate-integrated Waveguide Cavity Oscillator 50 4.1 Introduction………………………………………………….……. 50 4.2 Design Procedure…………………………………………………..51 4.3 Designs of 2.4 GHz Substrate-integrated Cavity Resonator Oscillator………………………………………………………….. 52 4.3.1 Design Goals…………………………………………….. 52 4.3.2 Device Selection and Bias Consideration……………….. 54 4.3.3 Oscillator Design………………………………………... 56 4.3.4 Circuit Simulation Results………………………………. 62 4.4 Measurement Results……………………………………………...66 4.5 Discussions on Measured Results…………………………………72 Chapter 5 Conclusion 75 Bibliography 76 List of Figures Fig. 2.2.1.1 The equivalent circuit of series resonator for one-port reflection measurement…………………………………………………………...7 Fig. 2.2.1.2 A typical one-port measurement of microwave resonator………9 Fig. 2.2.1.3 Mapping function versus return loss at resonance………….9 Fig. 2.2.2.1 The equivalent circuit of series resonator for two-port transmission measurement…………………………………………………………. 11 Fig. 2.2.3.1 The measured input return loss of 2.4 GHz cavity resonator………... 12 Fig. 2.2.3.2 The measured insertion loss of 2.4 GHz cavity resonator…………… 12 Fig. 2.3.1 Configuration of SIW cavity resonator……………………………… 13 Fig. 2.3.1.1 Effect of dielectric loss tangent and dielectric thickness……………. 15 Fig. 2.3.1.2 Q-factors of microstrip line and SIW versus dielectric thickness……15 Fig. 2.3.2.1 The insertion losses of three different feeding lengths……………… 17 Fig. 2.3.2.2 The return losses of three different feeding lengths………………… 18 Fig. 2.3.2.3 The return losses of three different feeding length on the Smith chart…………………………………………………………………..18 Fig. 2.3.2.4 The return losses of three different feeding lengths for over-coupled cases…………………………………………………………………. 19 Fig. 2.3.2.5 The return losses of three different feeding lengths for over-coupled cases on the Smith chart…………………………………………….. 19 Fig. 2.3.2.6 The insertion losses of three different via surrounding distances……20 Fig. 2.3.2.7 The insertion losses of three different via surrounding distances on the Smith chart…………………………………………………………... 21 Fig. 2.3.2.8 The insertion losses of three different gap widths…………………... 21 Fig. 2.3.2.9 The insertion losses of three different gap widths on the Smith chart………………………………………………………………..…22 Fig. 2.3.3.1 Different types of feeding configurations of cavity resonator………. 24 Fig. 3.2.1.1 The basic feedback circuit…………………………………………... 26 Fig. 3.2.2.1 One-port negative-resistance oscillator………………………………28 Fig. 3.2.2.2 Signal flow chart…………………………………………………….. 28 Fig. 3.2.2.3 Linear variation of negative resistance vs. current amplitude………..29 Fig. 3.2.2.4 The two-port oscillator model……………………………………….. 31 Fig. 3.3.1.1 Alternative representations for thermal noise (a) modeled by a series noise voltage source (b) modeled by a shunt noise current source….. 33 Fig. 3.3.1.2 Diode current vs. time………………………………………………..34 Fig. 3.3.1.3 The noise model of diode…………………………………………… 34 Fig. 3.3.1.4 The corner frequency of flicker noise………………………………..35 Fig. 3.3.2.1 Simplified small-signal model of bipolar transistors including noise sources………………………………………………………………. 37 Fig. 3.3.2.2 Simplified small-signal model of MOSFET including noise sources. 38 Fig. 3.4.1 The output spectrum of an oscillator………………………………... 39 Fig. 3.4.2 The phase noise spectrum of simple RLC oscillator proposed by Leeson………………………………………………………………..42 Fig. 3.4.3 The ideal model of RLC oscillator………………………………….. 42 Fig. 3.4.4 The phase and amplitude impulse response model…………………. 43 Fig. 3.4.5 Waveforms and ISF of (a) a typical LC oscillator and (b) a typical ring oscillator…………………………………………………………….. 44 Fig. 3.4.6 Conversions of noise to phase fluctuations and phase-noise sidebands……………………………………………………………. 46 Fig. 3.5.1 A series feedback oscillator using a BJT.............................................48 Fig. 3.5.2 A series feedback oscillator using a FET............................................ 49 Fig. 3.5.3 A shunt feedback oscillator................................................................. 49 Fig. 3.5.4 A parallel feedback oscillator..............................................................49 Fig. 4.2.1 The design procedure of SIW cavity oscillator…………………….. 52 Fig. 4.3.2.1 The DC I-V curve of the device……………………………………..55 Fig. 4.3.2.2 The of device versus frequency……………………………... 55 Fig. 4.3.3.1 The schematic of SIW cavity oscillator……………………………..56 Fig. 4.3.3.2 Two parallel-connected networks…………………………………... 58 Fig. 4.3.3.2 Substitutions of RF chokes (a) bonding-wire inductance (b) one-pole bandstop filter………………………………………………………. 59 Fig. 4.3.3.3 The frequency responses of one-pole bandstop filter……………….60 Fig. 4.3.3.4 Substitutions for DC blocks…………………………………………61 Fig. 4.3.4.1 The simulated Q-factors of SIW cavities on three different substrates…………………………………………………………… 63 Fig. 4.3.4.2 The harmonic balance simulation results…………………………... 64 Fig. 4.3.4.3 The transient simulation results……………………………………..65 Fig. 4.4.1 The measured Q-factors of SIW cavities resonator on three different substrates…………………………………………………………….67 Fig. 4.4.2 The measured phase noise of design on the FR4 at 100 kHz offset frequency…………………………………………………………… 68 Fig. 4.4.3 The measured phase noise of design on the FR4 at 1 MHz offset frequency…………………………………………………………… 68 Fig. 4.4.4 The measured phase noise of design on the RO3003 at 100 kHz offset frequency…………………………………………………………… 69 Fig. 4.4.5 The measured phase noise of design on the RO3003 at 1 MHz offset frequency……………………………………………………………69 Fig. 4.4.6 The measured phase noise of design on the RO4003 at 100 kHz offset frequency ……………………………………………………………70 Fig. 4.4.7 The measured phase noise of design on the RO4003 at 1 MHz offset frequency…………………………………………………………… 70 Fig. 4.4.8 The output power and photographs of oscillators on three different substrates…………………………………………………………… 71 Fig. 4.4.9 The setup of measurement…………………………………………. 72 Fig. 4.5.1 The comparisons between measurements and the Leeson’s model @ 100 kHz offset………………………………………………………75 Fig. 4.5.2 The comparison between measurements and the Leeson’s model @ 1 MHz offset………………………………………………………….75 List of Tables Table 1.2.1 The comparisons of reference papers………………………………….3 Table 2.2.3.1 The comparisons of two Q-factor measurements……………………. 11 Table 2.3.2.1 The relation between feeding length & Q-factor……………………..17 Table 4.3.1.1 The design goals of SIW cavity oscillator.………………………….. 53 Table 4.5.1 The comparisons among related oscillators……………..…………... 73 Table 4.5.2 The comparisons of three designs on different substrates……………74 | |
dc.language.iso | en | |
dc.title | 2.4 GHz 基板合成波導共振腔振盪器之設計與Q值和相位雜訊相關性分析 | zh_TW |
dc.title | The Design of 2.4 GHz Oscillators Using Substrate-integrated Waveguide Cavity & The Analysis of Relation between Q-factor and Phase Noise | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 盧信嘉(Hsin-Chia Lu),呂良鴻(Liang-Hung Lu) | |
dc.subject.keyword | 振盪器,基板合成波導,品質因素,相位雜訊, | zh_TW |
dc.subject.keyword | oscillator,substrate-integrated waveguide,quality factor,phase noise, | en |
dc.relation.page | 78 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-19 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。