請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3682完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王珮玲 | |
| dc.contributor.author | Ting-Feng Chang | en |
| dc.contributor.author | 張庭逢 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:35:56Z | - |
| dc.date.available | 2018-08-26 | |
| dc.date.available | 2021-05-13T08:35:56Z | - |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-19 | |
| dc.identifier.citation | Alirezaei, S. and Cameron, E.M. (2001) Variations of sulfur isotopes in metamorphic rocks from Bamble Sector, southern Norway: a laser probe study. Chem. Geol. 181, 23-45.
Berner, R.A. (1984) Sedimentary pyrite formation: an update. Geochimica et cosmochimica Acta 48, 605-615. Berner, R.A. and Raiswell, R. (1983) Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta 47, 855-862. Berner, R.A. and Raiswell, R. (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12, 365-368. Butler, I.B., Böttcher, M.E., Rickard, D. and Oldroyd, A. (2004) Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records. Earth and Planetary Science Letters 228, 495-509. Canfield, D.E. (1989) Reactive iron in marine sediments. Geochimica et Cosmochimica Acta 53, 619-632. Canfield, D.E. (1993) Organic matter oxidation in marine sediments, Interactions of C, N, P and S biogeochemical Cycles and Global Change. Springer, pp. 333-363. Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M. and Berner, R.A. (1986) The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149-155. Chambers, L. (1982) Sulfur isotope study of a modern intertidal environment, and the interpretation of ancient sulfides. Geochimica et Cosmochimica Acta 46, 721-728. Craig, J., Vokes, F. and Solberg, T. (1998) Pyrite: physical and chemical textures. Mineralium Deposita 34, 82-101. Guy, B., Ono, S., Gutzmer, J., Kaufman, A., Lin, Y., Fogel, M. and Beukes, N. (2012) A multiple sulfur and organic carbon isotope record from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. Precambrian Research 216, 208-231. Habicht, K.S., Gade, M., Thamdrup, B., Berg, P. and Canfield, D.E. (2002) Calibration of sulfate levels in the Archean ocean. Science 298, 2372-2374. Hayes, J. (1983) Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. Holland, M.M., Bitz, C.M. and Tremblay, B. (2006) Future abrupt reductions in the summer Arctic sea ice. Geophysical Research Letters 33. Holloway, J.M. and Dahlgren, R.A. (2002) Nitrogen in rock: occurrences and biogeochemical implications. Global Biogeochemical Cycles 16. Hsieh, Y. and Shieh, Y. (1997) Analysis of reduced inorganic sulfur by diffusion methods: improved apparatus and evaluation for sulfur isotopic studies. Chem. Geol. 137, 255-261. Kaplan, I.R. and Hulston, J.R. (1966) The isotopic abundance and content of sulfur in meteorites. Geochimica et Cosmochimica Acta 30, 479-496. Kendall, C., Silva, S.R. and Kelly, V.J. (2001) Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrological Processes 15, 1301-1346. Lin, S. and Morse, J.W. (1991) Sulfate reduction and iron sulfide mineral formation in Gulf of Mexio anoxic sediments. American Journal of Science 291, 55-89. Liu, Y., Nie, F., Jiang, S., Bagas, L., Xiao, W. and Cao, Y. (2016) Geology, geochronology and sulphur isotope geochemistry of the black schist-hosted Haoyaoerhudong gold deposit of Inner Mongolia, China: Implications for ore genesis. Ore Geology Reviews 73, 253-269. Meyers, P.A. (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 114, 289-302. Passier, H.F., Middelburg, J.J., de Lange, G.J. and Böttcher, M.E. (1997) Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel. Geology 25, 519-522. Raiswell, R. (1982) PYRITE TEXTURE, ISOTOPIC COMPOSITION AND THE AVAILABILITY OF IRON. American Journal of Science 282, 1244-1263. Raiswell, R. and Berner, R.A. (1986) Pyrite and organic matter in Phanerozoic normal marine shales. Geochimica et Cosmochimica Acta 50, 1967-1976. Rees, C., Jenkins, W. and Monster, J. (1978) The sulphur isotope geochemistry of ocean water sulphate: Geochemica Cosmochimica Acta, v. 42. Sælen, G., Raiswell, R., Talbot, M., Skei, J. and Bottrell, S. (1993) Heavy sedimentary sulfur isotopes as indicators of super-anoxic bottom-water conditions. Geology 21, 1091-1094. Sakai, H., Des Marais, D., Ueda, A. and Moore, J. (1984) Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochimica et Cosmochimica Acta 48, 2433-2441. Schidlowski, M. (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Research 106, 117-134. Schwab, V., Spangenberg, J.E. and Grimalt, J.O. (2005) Chemical and carbon isotopic evolution of hydrocarbons during prograde metamorphism from 100 C to 550 C: Case study in the Liassic black shale formation of Central Swiss Alps. Geochimica et cosmochimica acta 69, 1825-1840. Seal, R.R. (2006) Sulfur isotope geochemistry of sulfide minerals. Reviews in mineralogy and geochemistry 61, 633-677. Shen, Y., Buick, R. and Canfield, D.E. (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410, 77-81. Strauss, H. (1997) The isotopic composition of sedimentary sulfur through time. Palaeogeography, Palaeoclimatology, Palaeoecology 132, 97-118. Strauss, H., Des Marais, D.J., Hayes, J. and Summons, R.E. (1992) Proterozoic organic carbon—its preservation and isotopic record, Early Organic Evolution. Springer, pp. 203-211. Sweeney, R. and Kaplan, I. (1973) Pyrite framboid formation; laboratory synthesis and marine sediments. Economic Geology 68, 618-634. Taylor, K. and Macquaker, J. (2000) Early diagenetic pyrite morphology in a mudstone-dominated succession: the Lower Jurassic Cleveland Ironstone Formation, eastern England. Sedimentary Geology 131, 77-86. Thode, H., Monster, J. and Dunford, H. (1961) Sulphur isotope geochemistry. Geochimica et Cosmochimica Acta 25, 159-174. VOKES, F.M. (1993) The metamorphism of pyrite and pyritic ores: an overview. Mineralogical Magazine 57, 3-18. Wagner, T. and Boyce, A.J. (2006) Pyrite metamorphism in the Devonian Hunsrück Slate of Germany: Insights from laser microprobe sulfur isotope analysis and thermodynamic modeling. American Journal of Science 306, 525-552. Watanabe, Y., Naraoka, H., Wronkiewicz, D.J., Condie, K.C. and Ohmoto, H. (1997) Carbon, nitrogen, and sulfur geochemistry of Archean and Proterozoic shales from the Kaapvaal Craton, South Africa. Geochimica et Cosmochimica Acta 61, 3441-3459. Wilkin, R., Barnes, H. and Brantley, S. (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta 60, 3897-3912. Yang, T.F., Lan, T.F., Lee, H.-F., Fu, C.-C., Chuang, P.-C., Lo, C.-H., Chen, C.-H., Chen, C.-T.A. and Lee, C.-S. (2005) Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochemical Journal 39, 469-480. Yui, T.-F. (2005) Isotopic composition of carbonaceous material in metamorphic rocks from the mountain belt of Taiwan. International Geology Review 47, 310-325. Yui, T.-F., Kao, S.-J. and Wu, T.-W. (2009) Nitrogen and N-isotope variation during low-grade metamorphism of the Taiwan mountain belt. Geochemical Journal 43, 15-27.. 江協堂 (2010) 台灣東北部宜蘭平原及龜山島之地熱研究。國立台灣大學理學院海洋研究所博士論文,共105頁。 何春蓀 (1986) 台灣地質概論 ─ 台灣地質圖說明書,經濟部中央地質調查所,共169 頁。 林啟文與林偉雄 (1995) 三星圖幅暨說明書。經濟部中央地質調查所,圖幅第十五號。共 56 頁。 孫嘉璘 (2012) 溫度調控微生物硫酸還原作用之硫同位素分化研究。國立臺灣大學理學院地質科學系暨研究所碩士論文,共90頁。 許介瑋 (2012) 台灣西南海域永安海脊沉積物中厭氧甲烷氧化對於硫同位素及黃鐵礦生成的影響。國立台灣大學理學院海洋研究所碩士論文,共58頁。 陳宏宇,劉佳玫 (2013) 台灣地熱潛能之發展。台灣能源期刊,第一卷,第一期, 第 85-103 頁。 陳肇夏,王京新 (1995) 臺灣變質相圖說明。經濟部中央地調查所特刊第二號。 游明芳,廖珙含,羅偉 (2015) 宜蘭地區地質構造調查與地熱地質分析,第二期 能源國家型科技計畫地熱及天然氣水合物主軸中心103年地熱分項成果發表 會。 張哲銘 (2010) 台灣西南海域濁流沉積對沉積型黃鐵礦化作用影響之初步研究。國立台灣大學理學院海洋研究所碩士論文,共58頁。 劉佳玫、葉恩肇,孫天祥,林詩婷,宋聖榮 (2013) 清水地熱區地表地熱徵兆及 岩芯紀錄的探討。西太平洋地質科學,第十三卷,第 59-80 頁 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3682 | - |
| dc.description.abstract | 台灣北部宜蘭地區擁有豐富的地熱資源,隨著近年來地熱發電技術的提升和能源缺乏的議題逐漸浮現,宜蘭地區的地熱發電潛能再次受到重視。本研究分析取自宜蘭地區三口地熱鑽探井樣品之碳、氮、硫等元素和同位素特徵,以期提供宜蘭地區板岩帶的基本岩石化學特性、沉積環境、沉積物來源等訊息,並推測地熱來源的可能。由於宜蘭地區的岩石屬於輕度變質的板岩帶,為了比對這些元素在板岩的地化特徵,也分析了台灣中部橫貫公路沿線,從西側的沉積岩逐漸變質到東部的多次變質綠色片岩相的樣品,比較變質程度對這些地球化學特徵的影響。
分析結果顯示取自宜蘭地區的三口地熱井之地下岩樣,其碳、氮、硫等元素可能大多受到變質作用大幅影響,可依照其有機碳與總氮之比值判斷其有機物質的來源應為海源,而根據有機碳與黃鐵礦含量之關係,認為其原始沉積環境可能屬於有機物質、硫酸鹽含量與可反應含鐵物質皆充足,且硫酸還原反應快速的缺氧海洋環境。此外,根據黃鐵礦之產狀以及穩定硫同位素特徵,可知區域內之黃鐵礦有兩種成因,一種為典型的沉積型黃鐵礦,其黃鐵礦顆粒結晶較小、δ34S 值變化很大,而另外一種大顆粒黃鐵礦之 δ34S 值的變化較小,可能是沉積型黃鐵礦受到變質作用或與熱液反應再結晶而成,使其δ34S 數值較為集中,熱液活動徵兆與前人研究認為研究地域內可能有地底岩漿庫造成較高地溫梯度有關。至於中部橫貫公路沿線樣品之碳、氮、硫等元素的變化,隨變質度增加到多次變質綠色片岩相而稍有碳、氮流失和硫同位素值一致化的現象,但因樣品數量和種類的涵蓋性不足而無法定論。 | zh_TW |
| dc.description.abstract | Due to the shortage of non-regenerated energy resources and the development of advanced technology in geothermal energy exploration, the potential geothermal energy in Yilan is under revaluation. Three drilled cores from the Chingshui geothermal field and Yilan plain were examined for basic geochemical characteristics (C, N, S and S isotopes) of low-grade metamorphic rocks in slate belt and also for possible signature of geothermal resource. In order to nvestigate possible change of geochemical characteristics during progressive metamorphism, this study also examined a set of samples from sedimentary to greenschist-facies rocks in a transection of the central Taiwan mountain belt.
The results indicated that the C, N, and S contents of slate in Yilan area might still inherit their sedimentary origin and did not be modified during low-grade metamorphism. The low C/N ratios demonstrated that their organic matter is predominant marine origin. The relationship between organic carbon and pyrite contents suggested that the original sedimentary environment may be euxinic, where sulfate, organic matter and reactive iron were available and the sulfate reduction rate was high. The pyrite can be classified into two categories, according to their textures and δ34S signatures. One is fine-grained with highly variable δ34S values, representing a general characteristic of sedimentary pyrite; the other is coarse-grained with a narrower range of δ34S values, inferring a homogenization during metamorphism or recrystallization of a new growth from a specific geothermal fluid. Our findings seems consistent with previous study that the higher geothermal gradient in Yilan may caused by a magma chamber. The samples from the transection of the central Taiwan mountain belt showed that their C, N, and S contents was gradually depleted and sulfur isotopic compositions seemed homogenized in rocks of polymetamorphosed greenschist facies. Since the numbers and types of samples were limited currently, the result is still inconclusive. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:35:56Z (GMT). No. of bitstreams: 1 ntu-105-R02241301-1.pdf: 10711783 bytes, checksum: 4e6fddc421ccf48e14f83bdca2b04301 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 目錄
致謝 II 摘要 III Abstract IV 目錄 VI 圖目錄 VIII 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 沉積岩之碳、氮、硫組成特性 1 1.3 沉積型黃鐵礦的形成機制 2 1.4 硫同位素組成之地質意義 5 1.5 台灣變質帶之碳、氮相關研究 7 第二章 研究材料與方法 10 2.1 採樣地點 10 2.2 採樣方法 10 2.3 地球化學分析 14 2.3.1 總碳、總氮、總硫、有機碳及無機碳含量分析 14 2.3.2 沉積物中黃鐵礦萃取與含量測定 15 2.3.3 穩定硫同位素分析樣本之前處理 17 2.3.4 沉積物中黃鐵礦之穩定硫同位素分析與操作 18 第三章 分析結果 20 3.1 沉積物之總碳、總有機碳、總無機碳與總氮含量 20 3.1.1 總碳、總有機碳及總無機碳 20 3.1.2 總氮 24 3.2 沉積物之總硫及黃鐵礦硫含量 27 3.3 樣品之穩定硫同位素組成 30 3.4 黃鐵礦之產狀與光薄片觀察 33 3.4.1 黃鐵礦產狀 33 3.4.2光薄片觀察 34 第四章 討論 39 4.1碳、氮含量之變化與關係 39 4.1.2 有機碳與無機碳含量之變化 39 4.1.2氮含量之變化 40 4.1.3有機碳與總氮之比值 42 4.2 有機碳與黃鐵礦之關係 45 4.3硫同位素特徵與變化 47 4.3.1 黃鐵礦分類 47 4.3.2硫同位素特徵與來源探討 47 第五章 結論 50 參考文獻 51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 地球化學 | zh_TW |
| dc.subject | 硫同位素 | zh_TW |
| dc.subject | 地熱 | zh_TW |
| dc.subject | sulfur isotope | en |
| dc.subject | geothermal | en |
| dc.subject | Geochemical | en |
| dc.title | 台灣北部地熱區低度變質岩之碳氮硫地球化學特徵 | zh_TW |
| dc.title | Geochemical characteristics (C, N, and S) of low-grade metamorphic rocks in geothermal fields, northern Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林立虹,余炳盛,劉佳玫,葉恩肇 | |
| dc.subject.keyword | 硫同位素,地熱,地球化學, | zh_TW |
| dc.subject.keyword | sulfur isotope,geothermal,Geochemical, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU201602980 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-08-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 10.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
