Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 病理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36822
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭永銘,許輝吉
dc.contributor.authorYu-Jung Liuen
dc.contributor.author劉有容zh_TW
dc.date.accessioned2021-06-13T08:17:43Z-
dc.date.available2005-08-02
dc.date.copyright2005-08-02
dc.date.issued2005
dc.date.submitted2005-07-19
dc.identifier.citationAronheimA., Zandi E., Hennemann H., Elledge S. J., and Karin M.(1997).Isolation of AP-1 repressor by anevel method for detecting protein-protein interactioins. Mol Cell Biol 17:3094-102.
Bardi G., Johansson B., Pandis N., Heim S., Mandahl N., Andren-Sandberg A., Hagerstrand I., and Mitelman F. (1992). Cytogenetic findings in three primary hepatocellular carcinomas. Cancer Genet Cytogenet 58: 191-5.
Beasley R. P. (1988). Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer 61: 1942-56.
Becker S. A., Zhou Y. Z., and Slagle B. L. (1996). Frequent loss of chromosome 8p in hepatitis B virus-positive hepatocellular carcinomas from China. Cancer Res 56: 5092-7.
Bierie B, Edwin M, Joseph Melenhorst J, Hennighausen L. (2004) The proliferation associated nuclear element (PANE1) is conserved between mammals and fish and preferentially expressed in activated lymphoid cells. Gene Expr Patterns.4:389-95.
Boyd, J.M., Subramanian, T., Schaeper, U., La Regina, M., Bayley, S., and Chinnadurai, G. (1993). A region in the C-terminus of adenovi-rus2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J. 12, 469–478.
Bressac B, Kew M, Wands J, Ozturk M.(1991) Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature. 6317:429-31.
Bruix J., Barrera J. M., Calvet X., Ercilla G., Costa J., Sanchez-Tapias J. M., Ventura M., Vall M., Bruguera M., Bru C., and et al. (1989). Prevalence of antibodies to hepatitis C virus in Spanish patients with hepatocellular carcinoma and hepatic cirrhosis. Lancet 2: 1004-6.
Bruno S., Silini E., Crosignani A., Borzio F., Leandro G., Bono F., Asti M., Rossi S., Larghi A., Cerino A., Podda M., and Mondelli M. U. (1997). Hepatitis C virus genotypes and risk of hepatocellular carcinoma in cirrhosis: a prospective study. Hepatology 25: 754-8.
Chabes A. L., Pfleger C. M., Kirschner M. W., and Thelander L. (2003). Mouse ribonucleotide reductase R2 protein: a new target for anaphase-promoting complex-Cdh1-mediated proteolysis. Proc Natl Acad Sci U S A 100: 3925-9.
Chang M. H., Chen C. J., Lai M. S., Hsu H. M., Wu T. C., Kong M. S., Liang D. C., Shau W. Y., and Chen D. S. (1997). Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N Engl J Med 336: 1855-9.
Chen W. J., Lee J. C., and Hung W. T. (1988). Primary malignant tumor of liver in infants and children in Taiwan. J Pediatr Surg 23: 457-61
Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, Lai KM, Ji J, Dudoit S, Ng IO, Van De Rijn M, Botstein D, Brown PO (2002). Gene expression patterns in human liver cancers. Mol Biol Cell. 6:1929-39.
Choi B. I. (2004). The current status of imaging diagnosis of hepatocellular carcinoma. Liver Transpl 10: S20-5.
Chou Y. H., Chung K. C., Jeng L. B., Chen T. C., and Liaw Y. F. (1998). Frequent allelic loss on chromosomes 4q and 16q associated with human hepatocellular carcinoma in Taiwan. Cancer Lett 123: 1-6.
Coursaget P, Depril N, Chabaud M, Nandi R, Mayelo V, LeCann P, Yvonnet B.(1993). High prevalence of mutations at codon 249 of the p53 gene in hepatocellular carcinomas from Senegal. Br J Cancer. 6:1395-7.
Crawley J. J., and Furge K. A. (2002). Identification of frequent cytogenetic aberrations in hepatocellular carcinoma using gene-expression microarray data. Genome Biol 3: RESEARCH0075.
Daisuke Kamei, Makoto Murakami, Yoshihito Nakatani, Yukio Ishikawa, Toshiharu Ishii, and Ichiro Kudo. (2003). Potential Role of Microsomal Prostaglandin E Synthase-1 in Tumorigenesis. The Journal of Biological Chemistry 278:19396-19405
De Souza A. T., Hankins G. R., Washington M. K., Fine R. L., Orton T. C., and Jirtle R. L. (1995). Frequent loss of heterozygosity on 6q at the mannose 6-phosphate/insulin-like growth factor II receptor locus in human hepatocellular tumors. Oncogene 10: 1725-9.
Deuffic S., Poynard T., Buffat L., and Valleron A. J. (1998). Trends in primary liver cancer. Lancet 351: 214-5.
Donzelli M., Squatrito M., Ganoth D., Hershko A., Pagano M., and Draetta G. F. (2002). Dual mode of degradation of Cdc25 A phosphatase. Embo J 21: 4875-84.
Duguid JR, Rohwer RG, Seed B. (1988) Isolation of cDNAs of scrapie-modulated RNAs by subtractive hybridization of a cDNA library. Proc Natl Acad Sci U S A. 1988 15:5738-42.
Eberhart CG, Argani P.(2001). Wnt signaling in human development: beta-catenin nuclear translocation in fetal lung, kidney, placenta, capillaries, adrenal, and cartilage. Pediatr Dev Pathol 4:351-7.
El-Serag H. B. (2002). Hepatocellular carcinoma: an epidemiologic view. J Clin Gastroenterol 35: S72-8.
El-Serag H. B., and Mason A. C. (1999). Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 340: 745-50.
Emi M., Fujiwara Y., Ohata H., Tsuda H., Hirohashi S., Koike M., Miyaki M., Monden M., and Nakamura Y. (1993). Allelic loss at chromosome band 8p21.3-p22 is associated with progression of hepatocellular carcinoma. Genes Chromosomes Cancer 7: 152-7.
G. Chinnadurai (2002) CtBP, an Unconventional Transcriptional Corepressor in Development and Oncogenesis. Molecular Cell 9:213–224
Grignani, F., S. DeMatteis, C. Nervi, L. Tomassoni, V. Gelmetti, M. Cioce,M. Fanelli, M. Ruthardt, F. F. Ferrara, I. Zamir, C. Seiser, F. Grignani,M. A. Lazar, S. Minucci, and P. G. Pelicci. (1998). Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391:815–818.
Guidez, F., S. Ivins, J. Zhu, M. Soderstrom, S. Waxman, and A. Zelent. (1998). Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARα underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 91:2634–2642.
Haber, J.E. (1999). Sir-Ku-itous routes to make ends meet. Cell 97: 829–832.
Hamon-Benais C., Ingster O., Terris B., Couturier-Turpin M. H., Bernheim A., and Feldmann G. (1996). Interphase cytogenetic studies of human hepatocellular carcinomas by fluorescent in situ hybridization. Hepatology 23: 429-35.
Higashitsuji H., Itoh K., Nagao T., Dawson S., Nonoguchi K., Kido T., Mayer R. J., Arii S., and Fujita J. (2000). Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med 6: 96-9.
Hiramaa M, Takahashia F,Takahashia K, Akutagawac S, shimizua K. Somaa S, Shimanukia Y, Nishioc K, Fukuchia Y. (2003). Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Letter 198:107-117.
Hong, S. H., G. David, C. W. Wong, A. Dejean, and M. L. Privalsky. (1997).SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor a (RARα)and PLZF-RARα oncoproteins associated with acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 94:9028–9033.
Hsu H. C., Jeng Y. M., Mao T. L., Chu J. S., Lai P. L., and Peng S. Y. (2000). Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 157: 763-70.
Hsu H. C., Wu M. Z., Chang M. H., Su I. J., and Chen D. S. (1987). Childhood hepatocellular carcinoma develops exclusively in hepatitis B surface antigen carriers in three decades in Taiwan. Report of 51 cases strongly associated with rapid development of liver cirrhosis. J Hepatol 5: 260-7.
Hsu H. C., Wu T. T., Wu M. Z., Sheu J. C., Lee C. S., and Chen D. S. (1988). Tumor invasiveness and prognosis in resected hepatocellular carcinoma. Clinical and pathogenetic implications. Cancer 61: 2095-9.
Hsu HC, Jeng YM, Mao TL, Chu JS, Lai PL, Peng SY. (2000). Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol. 3:763-70.
Hsu HC, Tseng HJ, Lai PL, Lee PH, Peng SY.(1993). Expression of p53 gene in 184 unifocal hepatocellular carcinomas: association with tumor growth and invasiveness. Cancer Res. 19:4691-4.
Huang J. N., Park I., Ellingson E., Littlepage L. E., and Pellman D. (2001). Activity of the APC(Cdh1) form of the anaphase-promoting complex persists until S phase and prevents the premature expression of Cdc20p. J Cell Biol 154: 85-94.
Jonathan D. Cheng, Roland L. Dunbrack, Jr., Matthildi Valianou, Andre´ Rogatko, R. Katherine Alpaugh, and Louis M. Weiner (2002). Promotion of Tumor Growth by Murine Fibroblast Activation Protein, a Serine Protease, in an Animal Model. Cancer Research 62: 4767–4772
Kawate S., Fukusato T., Ohwada S., Watanuki A., and Morishita Y. (1999). Amplification of c-myc in hepatocellular carcinoma: correlation with clinicopathologic features, proliferative activity and p53 overexpression. Oncology 57: 157-63.
Kim JH, Skates SJ, Uede T, Wong KK, Schorge JO, Feltmate CM, Berkowitz RS, Cramer DW, Mok SC.(2002) JAMA. 287:1671-9.Osteopontin as a potential diagnostic biomarker for ovarian cancer.
Liang P, Pardee AB.(1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 5072:967-71.
Lin, R., L. Nagy, S. Inoue, W. Shao, W. Miller Jr., and R. Evans. (1998). Role of histone deacetylase complex in acute promyelocytic lekaemia. Nature391:811–814.
Littlepage L. E., and Ruderman J. V. (2002). Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. Genes Dev 16: 2274-85.
Loïodice I, Alves A, Rabut G, van Overbeek M, Ellenberg J, Sibarita JB, Doye V.(2004) The Entire Nup107-160 Complex, Including Three New Members, Is Targeted as One Entity to Kinetochores in Mitosis.Mol Biol Cell.15: 3333-3344.
Lustig B, Behrens J.(2003). The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol 129:199-221.
Mark Jackman, Yumiko Kubota, Nicole den Elzen, Anja Hagting, and Jonathon Pines (2002). Cyclin A- and Cyclin E-Cdk Complexes Shuttle between the Nucleus and the Cytoplasm. Molecular Biology of the Cell 13: 1030–1045
Nishida N., Fukuda Y., Komeda T., Kita R., Sando T., Furukawa M., Amenomori M., Shibagaki I., Nakao K., Ikenaga M., and et al. (1994). Amplification and overexpression of the cyclin D1 gene in aggressive human hepatocellular carcinoma. Cancer Res 54: 3107-10
Okuda K., Ohtsuki T., Obata H., Tomimatsu M., Okazaki N., Hasegawa H., Nakajima Y., and Ohnishi K. (1985). Natural history of hepatocellular carcinoma and prognosis in relation to treatment. Study of 850 patients. Cancer 56: 918-28.
Ordentlich, P., Downes, M., and Evans, R.M. (2001). Corepressors and nuclear hormone receptor function. Curr. Top. Microbiol. Immunol. 254: 101–116.
Ozturk M. p53 mutation in hepatocellular carcinoma after aflatoxin exposure. Lancet. 1991 Nov 30;338(8779):1356-9.
Pan HW, Ou YH, Peng SY, Liu SH, Lai PL, Lee PH, Sheu JC, Chen CL, Hsu HC.(2003) Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma.Cancer. 98:119-27.
Parkin D. M., Bray F., Ferlay J., and Pisani P. (2001). Estimating the world cancer burden: Globocan 2000. Int J Cancer 94: 153-6
Patrice JM, Andrew BS, Vladimir K, Nick B, Hans C, Bert V, et al. (1997). Activation of -catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275:1787-90.
Polakis P.(1999).The oncogenic activation of beta-catenin. Curr Opin Genet Dev 9:15-21.
Renou JP, Bierie B, Miyoshi K, Cui Y, Djiane J, Reichenstein M, Shani M, Hennighausen L.(2003) Identification of genes differentially expressed in mouse mammary epithelium transformed by an activated beta-catenin. Oncogene. 29: 4594-610.
Rocken C., and Carl-McGrath S. (2001). Pathology and pathogenesis of hepatocellular carcinoma. Dig Dis 19: 269-78.
Schaeper, U., Boyd, J.M., Verma, S., Uhlmann, E., Subramanian, T., and Chinnadurai, G. (1995). Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc. Natl. Acad. Sci. USA 92: 10467–10471.
Schena M, Shalon D, Davis RW, Brown PO.( 1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 5235: 467-70.
Sharp P. A., and Zamore P. D. (2000). Molecular biology. RNA interference. Science 287: 2431-3.
Sheu J. C., Lin Y. W., Chou H. C., Huang G. T., Lee H. S., Lin Y. H., Huang S. Y., Chen C. H., Wang J. T., Lee P. H., Lin J. T., Lu F. J., and Chen D. S. (1999). Loss of heterozygosity and microsatellite instability in hepatocellular carcinoma in Taiwan. Br J Cancer 80: 468-76.
Shore, D. (2000). The Sir2 protein family: a novel deacetylase for acting transcription gene silencing and more. Proc. Natl. Acad. Sci. USA 97: 14030–14032.
Tang Z. Y. (2002). Small hepatocellular carcinoma: current status and prospects. Hepatobiliary Pancreat Dis Int 1: 349-53.
Terris B., Ingster O., Rubbia L., Dubois S., Belghiti J., Feldmann G., Degott C., and Henin D. (1997). Interphase cytogenetic analysis reveals numerical chromosome aberrations in large liver cell dysplasia. J Hepatol 27: 313-9.
Thorgeirsson S. S., and Grisham J. W. (2002). Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31: 339-46.
Tsukuma H., Hiyama T., Tanaka S., Nakao M., Yabuuchi T., Kitamura T., Nakanishi K., Fujimoto I., Inoue A., Yamazaki H., and et al. (1993). Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N Engl J Med 328: 1797-801.
Vance V., and Vaucheret H. (2001). RNA silencing in plants--defense and counterdefense. Science 292: 2277-80.
Velculescu VE, Zhang L, Vogelstein B, Kinzler KW.(1995) Serial analysis of gene expression. Science. 5235:484-7.
Vincent S., Marty L., and Fort P. (1993). S26 ribosomal protein RNA: an invariant control for gene regulation experiments in eucaryotic cells and tissues. Nucleic Acids Res 21: 1498.
Vo, N., Fjeld, C., and Goodman, R.H. (2001). Acetylation of nuclear hormone receptor-interacting protein RIP140 regulates binding of the transcriptional corepressor CtBP. Mol. Cell. Biol. 21: 6181–6188.
Wang G., Zhao Y., Liu X., Wang L., Wu C., Zhang W., Liu W., Zhang P., Cong W., Zhu Y., Zhang L., Chen S., Wan D., Zhao X., Huang W., and Gu J. (2001). Allelic loss and gain, but not genomic instability, as the major somatic mutation in primary hepatocellular carcinoma. Genes Chromosomes Cancer 31: 221-7.
Yedibela S., Fortsch T., Hohenberger W., and Meyer T. (2004). Liver transplantation for hepatocellular carcinoma: a single European centre experience. Langenbecks Arch Surg 389: 104-9.
Yeh S. H., Chen P. J., Lai M. Y., and Chen D. S. (1996). Allelic loss on chromosomes 4q and 16q in hepatocellular carcinoma: association with elevated alpha-fetoprotein production. Gastroenterology 110: 184-92.
Yin X. Y., Shen Q., Lu M. D., and Xie X. Y. (2004). Ultrasound-guided percutaneous boiling carboplatin injection (PBCI) for the treatment of small hepatocellular carcinoma: a preliminary study. Hepatogastroenterology 51: 1129-34
Zamore P. D. (2002). Ancient pathways programmed by small RNAs. Science 296: 1265-9.
Zhang X., Xu H. J., Murakami Y., Sachse R., Yashima K., Hirohashi S., Hu S. X., Benedict W. F., and Sekiya T. (1994). Deletions of chromosome 13q, mutations in Retinoblastoma 1, and retinoblastoma protein state in human hepatocellular carcinoma. Cancer Res 54: 4177-82.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36822-
dc.description.abstract肝癌是台灣地區常見的惡性腫瘤。在本研究中我們從際網路上下載史丹佛大學對165 個樣本肝細胞癌基因微陣列分析所完成的原始數據加以分析,希望能找出在肝癌中發生變化的重要基因,結果篩選出五個在肝細胞癌有過度表現的基因:PANE1 (proliferation associated nuclear element 1) , KIAA0101, PTTG1, LAP18, ZWINT等,並且尚未發現與肝癌相關之正式論文發表,值得作進一步的研究。我們首先以反轉錄-聚合酶連鎖反應 (RT-PCR) 大量篩檢在肝癌組織中這些基因mRNA異常表現的狀況,並與臨床病理學的特徵作關聯性的分析,其中發現PANE1在肝癌組織中過量表現最為明顯,並且在相對非腫瘤肝組織中表現量很低,所以我們以PANE1作為本篇論文的研究重點。目前僅有的兩篇報導顯示PANE1主要表現於免疫細胞或其腫瘤,包括白血病及淋巴瘤並,且在胚胎組織的肝、脾、胸腺組織有相等程度的高度表現,而於成人組織則表現量低。
在臨床病理學的研究上,我們選取125個原發性肝細胞癌作分析,發現到58.4%的原發性肝細胞癌有PANE1的過量表現,並且與多項的臨床病理學特徵都具有顯著的相關性,當PANE1過量表現時,病人血清AFP濃度升高 (AFP>200 ng/mL,71%比 27 %,P值=0.00001),常出現在較大的腫瘤 (直徑>5 cm, 67%比50 %,P值=0.054),當腫瘤級別 (grade) 高 (II,III,IV級) 腫瘤分化差時PANE1表現量高 (97%比44 %,P值=0.0007),病人肝癌期別 (stage) 越高且有發生血管侵犯者 (第III、IV期肝癌),PANE1表現量高 (71%比38 %,P值=0.0003)。PANE1的過量表現病人容易在一年內早期肝癌復發 (58%,P值=0.0002) 有關,並且病人的五年存活率 (P值=0.048) 較低,顯示PANE1與肝癌的分化、侵襲與轉移有密切關連,可以當作肝癌預後因子,且可預測對預後極為不良的早期肝癌復發,有助對術後病人的追蹤與處理。所以我們繼續研究PANE1在癌症發生中扮演的角色及可能具有的功能。
在本研究中,我們用表現載體表現PANE1於細胞株中,以模擬PANE1在肝癌中的過量表現,用MTT assay測定生長速率,發現過量表現PANE1可使細胞在無血清的情況下生長較快;用soft agar assay測定結果發現過量表現PANE1可以促進細胞的非貼附性生長能力;用裸鼠作腫瘤生長能力分析,則過量表現PANE1的細胞株可以在生物體內生成腫瘤;相對地,當我們用PANE1 siRNA使細胞的PANE1 mRNA表現量降低 (knockdown) 時,則使細胞長成群落的能力降低。由這些結果我們可以推測PANE1可能是一個致癌基因。
由於在HeLa細胞週期cDNA微陣列資料庫中,我們發現PANE1 mRNA的表現似乎有隨S期而增加,M期而減少,所以進一步研究PANE1在細胞週期中的變化,我們用EGFP-PANE1表現載體轉染至細胞中,發現PANE1的分佈和細胞週期有關,當細胞在S期時,PANE1主要分佈在細胞核,進入G2/M期時則分佈在細胞質較多,並還有出現在細胞核附近的點狀分佈。而我們也看得到EGFP-PANE1在核膜的分佈,由酵母菌雙雜合系統結果發現到Nup37具有與PANE1的結合潛力並位於核膜可以傳送大分子於細胞核質間,因此推測PANE1經由與Nup37的結合而分佈到不同的位置。另外,我們用西方墨點分析法測定持續表現EGFP-PANE1融合蛋白的細胞株中PANE1-EGFP的量,發現到在細胞週期中的G1/S期與G2/M進入G0/G1期時EGFP-PANE1會被降解,明顯減少,顯示出PANE1的降解與細胞週期有關,而PANE1胺基酸序列上具有D-box並且具有與蛋白酶體26S次單元體ATP酶2及ring-box 1 (RBX1)等與泛素-蛋白酶體途徑相關的結合潛力,而和細胞週期相關的蛋白質亦常由此途徑降解,因此PANE1經由此途徑降解的機會很大。
我們用酵母菌雙雜合系統想要來尋找和PANE1具有交互作用的蛋白質並嘗試瞭解PANE1在生物學上可能的角色。由此結果,我們發現到與PANE1具有結合潛力中的蛋白質中如解旋酶、引子合成酶為DNA合成時需要的酵素及cyclin-dependent kinase 2-interacting protein和細胞週期有關的蛋白質,表示PANE1的確可能細胞週期有關。另一方面,我們也發現到PANE1具有與PLZF轉錄抑制子、SAP30轉錄共抑制子及GTF2IRD2轉錄因子的結合潛力表示PANE1在轉錄調節上具有功能。
zh_TW
dc.description.abstractHepatocelluar carcinoma (HCC) is one of the most common fatal malignancies in Taiwan. In an attempt to identify potential genes related to the tumorigenesis and progression of HCC, we downloaded the raw data of cDNA microarray analysis of human HCCs from Stanford cDNA microarray database web site. Based on the bioinformatics analysis, we selected five genes further study, including PANE1 (proliferation associated nuclear element 1), KIAA0101, PTTG1, LAP18, ZWINT, which were shown to aberrantly express in HCC and had not been reported to be associated with HCC. First, we used RT-PCR for large-scale screening of the mRNA expression of these genes in HCC and correlated the aberrant expression with the major clinicopathological features of HCC. We found that PANE1 was overpressed in HCCs, whereas the mRNA level was very low or undetectable in the non-tumor liver. So we chose PANE1 for this study. From the limited information reported in two papers, the expression of human PANE1 gene was detected preferentially in immune cells, including leukemias and lymphomas. PANE1 was highly expressed in fetal liver, thymus and spleen, but little expression was observed in the majority of adult tissues.
In the clinicopathologic study of the 125 patients with unifocal primary HCC, the overexpression of PANE1 mRNA was found in 73 (58.4%), and associated with more frequent high serum AFP elevation (71%, P=0.00001), tumor size more than 5 cm (67%, P=0.054), grade II-IV tumor (67%, P=0.0007), portal vein invasion (stage IIIB to IV) (71%, P=0.00003), and early tumor recurrence (58%, P=0.0002), and hence significantly lower 4-5 year survival rate (p=0.048). These findings suggest that PANE1 overexpression is associated with bigger tumor size, poor tumor differentiation, and greater tumor invasion/metastasis potential, hence more advanced disease stage and poor prognosis. Our results also indicate that PANE1 overexpression can serve as a useful predictive factor for early tumor recurrence, which is one of the most factors associated with poor prognosis of HCC after tumor resection. We furthermore study the role and possible function of PANE1 in tumorigenesis.
In this study, we used expression vector to mimic PANE1 overexpression in HCC. Our results indicate that overexpression of PANE1 can enhance cell proliferation on serum free medium by MTT assay, induce anchorage-independent growth by soft agar assay, and induce tumorigenic transformation in vivo by nude mice tumorigenicity assay. This suggestion is supported by the observation that siRNA knockdown of PANE1 reduced colony formation. Hence, it is suggested that PANE1 may be a oncogene.
The HeLa cell cycle cDNA microarray’s database indicates that PANE1 is periodically expressed in the HeLa cell cycle. The PANE1 mRNA expression appears to increase in S-phase and decrease in M-phase. We then did a study to analyze the change of PANE1 mRNA level during cell cycle progression. With the transfection of EGFP-PANE1 to Huh7 cell, we found that in S-phase, PANE1 was mostly located in the nuclei, and persisted in the cytoplasm in G2/M-phase, associated with a dot distribution near the nuclei. We also found that PANE1 located to the nuclear envelope. It is possible that PANE1 can be bidirectional transported between the cytoplasm and nucleus. By yeast two-hybrid screen, we identified Nup37 as a PANE1 binding protein. Nup37 is localized to the nuclear envelope (PANE1 shuttles to the nuclei via the binding with Nup37) On the other hand, we found that PANE1 could be degraded in S-phase and late mitosis to G0/G1 transition. PANE1 has a D-box sequence that can bind the ring-box1 protein and proteasome 26S subunit 2, ATPase, which is associated with ubiqutin-proteasome pathway. Cell cycle associated proteins are often degraded through this pathway. It is possible that PANE1 may be also degraded through this pathway.
We used yeast two-hybrid to identify the interaction proteins of PANE1 for further studies to better know the biological function of PANE1. We found some that PANE1-interacting proteins, such as primase, helicase and cyclin-dependent kinase 2-interacting protein which play important roles in DNA synthesis or cell cycle progression. We also found that PANE1 interacted with transcription corepressor PLZF and SAP30, and transcription factor GTF2IRD2. These findings suggest that PANE1 play an important role in transcription regulation.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:17:43Z (GMT). No. of bitstreams: 1
ntu-94-R92444005-1.pdf: 2380650 bytes, checksum: 7b258eaf260c3c33fc20d5471e24f8bd (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要 1
Abstract 4
第一章 序論 7
一、台灣肝細胞癌的發生狀況 7
二、引發肝癌的危險因子 8
三、肝癌的基因改變與異常 9
四、肝癌的染色體異常 10
五、肝癌特異性表現基因篩選 11
六、PANE1 (proliferation associated nuclear element 1) 基因的研究 12
第二章 材料與方法 13
一、組織檢體 13
二、組織學研究與腫瘤分期 13
三、早期腫瘤復發 13
四、分析基因在腫瘤與正常組織的差異表現之方法 14
五、反轉錄-聚合酶連鎖反應 (RT-PCR) 14
六、基因表現載體的構築 15
七、西方墨點分析 (Western Blot analysis) 15
八、細胞培養及質體DNA的轉染 (transfection) 16
九、siRNA載體的構築 16
十、非貼附性生長 (Anchorage independent growth) 分析 16
十一、以MTT assay評估細胞生長速率 (cell proliferation) 17
十二、免疫組織化學染色 (Immunohistochemistry) 17
十三、腫瘤生長能力分析 (tumorigenicity assay) 18
十四、酵母菌雙雜合系統 (Yeast two-hybrid system) 18
十五、統計分析 19
第三章 結果 20
第一部份:篩選在肝癌組織有過度表現的基因 20
一、肝癌特異性表現基因之篩選:基因微陣列 20
二、用RT-PCR初步分析篩選基因之mRNA在肝癌組織的表現 20
第二部份:PANE1基因在肝細胞癌的表現 21
一、分析PANE1基因在肝癌組織中的表現和臨床病理學因子的關聯性 21
二、PANE1蛋白質的特徵 21
三、選殖PANE1蛋白質表現於哺乳類細胞株 22
四、PANE1在哺乳類細胞內的分佈 23
五、PANE1 mRNA的表現及分佈與細胞週期的關係 23
六、PANE1與β-catenin途徑的關係 24
七、過量表現PANE1對細胞生長速率的影響 25
八、PANE1表現對細胞非貼附性生長 (Anchorage-independent growth) 的影響 25
九、過度表現PANE1可以誘使HEK293細胞轉形並在生物體內生成為腫瘤 26
十、PANE1 siRNA對HeLa及Huh7之細胞群落形成 (colony formation) 的影響 26
十一、具有與PANE1結合潛力的蛋白質 27
第四章 討論 30
一、PANE1可以作為肝癌在病理學上的指標 30
二、PANE1可能為促進癌化的基因 32
三、PANE1與細胞週期的關係 33
1. PANE1 mRNA的表現量與細胞週期的關係 33
2. PANE1蛋白質的降解(degradation)與細胞週期的關係 34
3. PANE1在細胞週期中可能的角色 35
4. PANE1的分佈與細胞週期的關係 35
四、PANE1的轉錄調節功能 36
五、PANE1與其轉錄異構物間的生物學活性 38
第五章 參考文獻 40
第六章 表與圖 49
表1引子序列 49
表2 PANE1 mRNA的表現與肝癌病理特徵的關聯性 50
表3 PANE1 mRNA的表現與基因改變的關聯性 51
表4酵母菌雙雜合系統之結果 52
圖1 PANE1基因的表現 54
圖2 以RT-PCR篩選基因的在肝癌的差異表現 55
圖3以RT-PCR半定量PANE1 mRNA在肝癌的表現情形 56
圖4存活率曲線 57
圖5 PANE1蛋白質的特徵 58
圖6 PANE1的轉錄異構物 59
圖7 EGFP-PANE1表現載體 60
圖8 FLAG-PANE1表現載體 61
圖9 PANE1融合蛋白的分佈 62
圖10 EGFP-PANE1在細胞的分佈 63
圖11 PANE1 mRNA在細胞週期中的表現 64
圖12 EGFP-PANE1在細胞週期中的分佈 65
圖13細胞週期外源性EGFP-PANE1融合蛋白的變化 66
圖14 PANE1與β-catenin途徑相關分子的關係 67
圖15 MTT assay分析過量表現PANE1對細胞生長速率的影響 68
圖16 PANE1的細胞轉形能力 69
圖17 Tumorigenicity assay 70
圖18暫時性轉染PANE1siRNA對細胞群落形成的影響 71
圖19暫時性轉染PANE1 shRNA對Huh7細胞群落形成影響 72
圖20 LexA-Gla4酵母菌雙雜合系統 73
圖21 Sos-Ras酵母菌雙雜合系統 74
圖22 圖示酵母菌雙雜合系統結果 75
dc.language.isozh-TW
dc.subject病理zh_TW
dc.subject肝癌zh_TW
dc.subjectpathologyen
dc.subjectPANE1en
dc.subjectHCCen
dc.title肝細胞癌中PANE1基因之臨床病理與功能研究zh_TW
dc.titleClinicopathologic and Functional Study of
PANE1 in Hepatocellular Carcinoma
en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳惠玲,呂勝春,李玉梅
dc.subject.keyword肝癌,病理,zh_TW
dc.subject.keywordPANE1,HCC,pathology,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2005-07-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept病理學研究所zh_TW
顯示於系所單位:病理學科所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved