Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36809
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳政維
dc.contributor.authorBor-Kai Wangen
dc.contributor.author王柏凱zh_TW
dc.date.accessioned2021-06-13T08:17:03Z-
dc.date.available2006-07-20
dc.date.copyright2005-07-20
dc.date.issued2005
dc.date.submitted2005-07-19
dc.identifier.citation1. N. C. Baenziger, and J. W. Conant, “The crystal structures of SrZn5 and BaZn5”, Acta Crystallographica 9, 361 (1956).
2. W. Haucke, “The structures of alpha-Ca Cu, beta-Ca Cu, Sr Ag and Ba Ag: Four different stacking variants based on noble-metal-centered trigonal prisms”, Zeitschrift fuer Anorganische und Allgemeine Chemie 244, 17 (1940).
3. L. Misch, “Die Kristallstruktur des AuBe5 und PdBe5 und ihre Beziehungen zur kubischen AB2-Struktur”, Metallwirtschaft, Metallwissenschaft, Metalltechnik 14, 897 (1935).
4. A. E. Dwight, Trans. Am. Soc. Metals 53, 479 (1961).
5. S. E. Haszko, Trans. AIME 218, 763 (1960).
6. K. H. J. Buschow, A. S. van der Goot, and J. Birkhan, “Rare-earth copper compounds with AuBe5 structure”, J. Less-Common Metals 19, 433 (1969).
7. K. H. J. Buschow, and A. S. van der Goot, “Composition and crystal structure of hexagonal Cu-rich rare earth-copper compounds”, Acta. Cryst. B 27, 1085 (1971).
8. T. Takeshita, S. K. Malik, and W. E. Wallace, “Crystal structure of RCu4Ag and RCu4Al (R = rare earth) intermetallic compounds”, J. Solid State Chem. 23, 225 (1978).
9. L. D. Tung, K. H. J. Buschow, J. J. M. Franse, P. E. Brommer, H. G. M. Duijn, E. Brück, and N. P. Thuy, “Magnetic and electrical properties of the pseudo-binary GdCu5-xAlx compounds”, J. Alloys Comp. 269, 17 (1998).
10. E. Bauer, R. Hauser, L. Keller, P. Fischer, J. J. Rieger, G. R. Stewart, “Onset of magnetic order in YbCu5-xAlx”, Phys. Rev. B 56, 711 (1997)
11. J. H. Wernick, and S. Geller 662, 'Transition element - rare earth compounds with the Cu5Ca structure', Acta. Cryst. 12, (1959).
12. J. Liu, and E. L. Huston, 'RNi5 Hydrogen storage conpounds (R = rare earth)', 90, 11(1983).
13. T. Takeshita, S. K. Malik, and W. E. Wallace, 'Hydrogen absorption in RNi4Al (R = rare earth) ternary compounds, J. Solid State Chem. 23, 271 (1978).
14. E. L .Hoston, and G. D. Sandrock, J. Less-Common Metals 74, 435 (1980).
15. K. J. Strnat, in: E. P. Wohlfarth, K. H. J. Buschow (Eds.), 'Ferromagnetic Materials', Vol. 4, 131 Edition, Elservier, North-Holland, Amsterdam (1988).
16. C. Zlotea, and O. Isnard, 'Crystal and magnetic structure of hexagonal RCo4Al intermetallic compounds (R = Y and Pr)', J. Magn. Magn. Mater. 253, 118 (2002).
17. H. Ido, K. Konno, T. Ito, S. F. Cheng, S. G. Sankar, and W. E. Wallace, 'Magnetic properties of RCo4M (R = Y, Nd and Ho; M = B, Al and Ga), J. Appl. Phys. 69, 5551 (1991).
18. K. Konno, H. Ido, S. F. Cheng, S. G. Sankar and W. E. Wallace, 'Al-substitution effects on the magnetic properties of RCo5 (R = Y, Pr, Nd, and Sm)', J. Appl. Phys. 73, 5929 (1993).
19. K. Kadir, T. Sakai, I. Uehara, and L. Eriksson, 'YCu3Al2, an example of an AB5 structure type', Acta. Cryst. C 57, 999 (2001).
20. S. M. Kim, W. J. L. Buyers, H. Lin, and E. Bauer, 'Structure of the heavy electron compounds Ce(CuxAl1-x)5 and Ce(CuxGa1-x)5, [0.6≦x≦0.8]', Z. Phys. B - Condensed Matter 84, 201 (1991).
21. E. Bauer, R. Hausert, E. Gratz, D. Gignoux, D. Schmitt, and Sereni, 'Transport and thermodynamical properties of Yb(Cu, Al)5 compounds, J. Phys. : Condens. Matter 4, 7829 (1992).
22. L. Guenee, and K. Yvon, 'Structure stability maps for intermetallic AB5 compounds', J. Alloys Comp. 356~357, 271 (2003).
23. D. X. Li, S. Nimori, Y. Shiokawa, Y. Haga, E. Yamamoto, and Y. Onuki, 'Magnetic, transport, and thermal properties of ternary intermetallic compound Nd2PtSi3', Solid State Commun. 120, 227 (2001).
24. A. M. Strydom, 'Structure determination of the new rare-earth compound Ce2PdGe3', South African Journal of Science 99, 227 (2003).
25. S. Süllow, G. J. Nieuwenhuys, A. A. Menovsky, J. A. Mydosh, S. A. M. Mentink, T. E. Mason, and W. J. L. Buyers, 'Spin glass behavior in URh2Ge2', Phys. Rev. Lett. 78, 354 (1997).
26. D. X. Li, Y. Shiokawa, Y. Homma, A. Uesawa, A. Dönni, T. Suzuki, Y. Haga, E. Yamamoto, and T. Honma, 'Evidance for the formation of the spin-glass state in U2PdSi3', Phys. Rev. B 57, 7434 (1998).
27. K. Andres, E. Bucher, P. H. Schmidt, J. P. Maita, and S. Darack, 'Nuclear-induced ferromagnetism below 50 mK in the Van Vleck paramagnet', Phys. Rev. B 11, 4364 (1975).
28. A. Benoit, J. Flouquet, J. L. Genicon, and J. Palleau, 'Magnetic ordering in PrCu5 by neutron differaction', Physica B 109~110, 2162 (1982).
29. V. M. T. S. Barthem, D. Gignoux, A. Nait-Saada, D. Schmitt, and A. Y. Takeuchi, 'Magnetic properties of the hexagonal NdNi5 and NdCu5 compounds', J. Magn. Magn. Mater. 80, 142 (1989).
30. M. Divis, E. A. Goremychkin, P. Svoboda, V. Nekvasil, J. Bischof, and R. Osborn, 'Magnetism and crystal field in NdCu5', Physica B 168, 251 (1991).
31. P. Svoboda. M. Divis, J. Bischof, Z. Smetana, R. Cerny, and J. Burianek, 'The magnetix properties of SmCu5', Phys. Stat. Sol. A 119, K67 (1990).
32. P. Svoboda. M. Divis, E. Gratz, R. Cerny, and L. Dobiasova, 'Susceptibility and magnetization of SmCu5', Phys. Stat. Sol. A 123, K149(1991).
33. J. M. Barandiaran, D. Gignoux, J. Rodriguez-Fernandez, and D. Schmitt, 'Magnetic properties and magnetic structure of hexagonal GdGa2 and GdCu5 compounds', Physica B 154, 293 (1989).
34. K. H. J. Buschow, A. M. van Diepen, and H. W. de Wijn, 'Magnetic properites and resonance of cubic RCu5 intermetallic compounds', J. Appl. Pyhs. 41, 4609 (1970).
35. T. Kaneko, M. Ohashi, S. Abe, K. Kamigaki, and H. Yoshida, 'Magnetic structure of TbCu5', J. Magn. Magn. Mater. 54~57, 469 (1986).
36. B. Idzikowski, and A. Jezierski, 'Magnetic properties, magnetoresistance, and electronic structure of cubic DyCu5', J. Appl. Phys. 85, 4744 (1999).
37. S. Ilkovic, M. Reiffers, B. Iszikowski, and K. H. Muller, 'Electron-quasiparticle interaction and electrical resistivity of cubic HoCu5', J. Magn. Magn. Mater. 242~245, 858 (2002).
38. S. Ilkovic, M. Reiffers, B. Iszikowski, and K. H. Muller, 'Electron-quasiparticle interaction and electrical resistivity of cubic TmCu5', J. Magn. Magn. Mater. 225~229, 953 (2001).
39. G. R. Steward, 'Heavy fermion systems', Rev. Mod. Phys. 56, 755 (1984).
40. J. M. Lawrence, P. S. Riseborough, and R. D. Parks, 'Valance fluctuation phenomena', Rep. Prog. Phys. 44, 1 (1981).
41. Harry B. Radousky, 'Magnetism in heavy fermmion systems', Singapore ; River Edge, NJ : World Scientific, c2000, (2000).
42. S. M. M. Evans, A. K. Bhattacharjee, and B. Coqblin, 'Magnetic and transport properties of cerium Kondo compounds', Physica B 171, 293 (1991).
43. E. Bauer, E. Gratz, and C. Schmitzer, 'CeCu5: another Kondo lattice showing magnetic order', J. Magn. Magn. Mater. 63~64, 37 (1987).
44. E. Bauer, E. Gratz, J. Kohlmann, K. Winzer, D. Gignoux, and D. Schmitt, 'Low temperature properties in Ce(CuxAl1-x)5 [0.60≦x≦1.00]', Z. Phys. B - Condensed Matter 80, 263 (1990).
45. E. Bauer, D. Gignoux, D. Schmitt, and K. Winzer, 'A crossover from the magnetic Kondo compound CeCu5 to the heavy fermion compounds CeCu4Al and CeCu3Al2', J. Magn. Magn. Mater. 69, 158 (1987).
46. E. Bauer, N. Pillmayr, E. Gratz, D. Gignoux, and D. Schmitt, 'Evidence of a fermion behavior in CeCu3Al2', J. Magn. Magn. Mater. 67, L143 (1987).
47. J. Kohlmann E. Bauer, and K. Winzer, 'Low temperature specific heat and susceptibility of the heavy fermion systems CeCu3Al2 and CeCu3Ga2', Physica B 163, 188 (1990).
48. E. Bauer, K. Payer, R. Hauser, E. Gratz, D. Gignoux, D. Schmitt, N. Pillmayr, and G. Schaudy, 'A crossover from intermediate valence to integer valence in Yb(Cu,Al)5 compounds', J. Magn. Magn. Mater. 104~107, 651 (1992).
49. A. Iandelli, and A. Palensona, 'The ytterbium-copper system', J. Less-Common Metals 25, 333 (1971).
50. P. Villars, and L.D. Calvert, 'Pearson's handbook of crystallographic data for intermetallic phases ' , Materials Park, OH : ASM International, (1991).
51. A. E. Dwight, Trans. ASME 53,(1961).
52. N. Grewe, and F. Steglich , 'Handbook on the physics and chemistry of rare earth', Vol. 14, edited by K. A. Gschneidner, Jr. and L. Eyring, Elsevier Science Publishers B. V., 1991, 479 (1991).
53. G. T. Meaden, Electrical Resistance of Metals, Plenum Press, 1965.
54. J. M. Ziman, Electrons and Photons, Cambridge University Press, 1960.
55. Theodore Van Duzer, Charles W. Turner, Principles of Superconductive Devices and Circuits, Prentice Hall PTR, 1999, 2nd Ed.
56. U. Mizutani, Introduction to the Electron Theory of Metals, Cambridge University Press, 2001.
57. H. Onodera, M. Ohashi, H. Amanai, S. Matsuo, H. Yamauchi, S. Funahashi, Y. Morii, J. Magn. Magn. Mater., 149, 287 (1995).
58. H. Wiesmann, M. Gurvitch, H. Lutz, A. Ghosh, B. Schwarz, Myron Strongin, Phys. Rev. Lett. 38, 782 (1977).
59. S. Ramakrishnan, A. K. Nigam, G. Chandra, Phys. Rev. B 34, 6166 (1986).
60. C. Mazumdar, K. Ghosh, S. Ramakrishnan, R. Nagarajan, L. C. Gupta, G. Chandra, B. D. Padalia, and R. Vijayaraghavan Phys. Rev. B 50, 13879 (1994).
61. A. H. Wilson, Proc. Roy. Soc. (London), Ser. A 167, 580 (1938).
62. Allan H. Morrish, The Physical Principles of Magnetism, John Wiley & Sons, 1965.
63. N. W. Ashcroft, N. D. Mermin, Solid State Physics, Saunders College Publishing, 1976.
64. K. Yosida, The Theory of Magnetism, Springer, 1996.
65. George T. Rado, H. Suhl, Magnetism IIA, Academic Press, 1965.
66. K. H. J. Buschow, Handbook of Magnetic Materials Vol. 6, Elsevier North-Holland, 1991.
67. Y. Singh, and S. Ramakrishnan, “Magnetic ordering and superconductivity in the R2Ir3Ge5 (R = Y, La, Ce-Nd, Gd-Tm, Lu) system”, Phys. Rev. B 69, 174423 (2004).
68. N. G. Patil, and S. Ramakrishnan, “Magnetism in the R5T4Sn10 (R = Ce, Pr, and Nd; T = Rh and Ir) system”, Phys. Rev. B 56, 3360 (1997).
69. K. Knorr, W. Gross, J. F. Olijhoek, and K. H. J. Buschow, “Crystal fields in TmCu5”, J. Phys. F: Matal Phys. 9, 645 (1979).
70. D. P. Rojas, L. P. Cardoso, A. A. Coelho, and F. G. Gandra, “Unusual behavior of the Kondo temperature of La1-xYbxCu3Al2”, Phys. Rev. B 63, 165114 (2001).
71. A. M. Stewart, Phys. Rev. B 6, 1985 (1972).
72. D. Mazzone, P. Riani, M. Napoletano, and F. Canepa, “The magnetism of Sm3Ag4Sn4 and Gd3Ag4Sn4”, J. Alloys Comp. 387, 15 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36809-
dc.description.abstract在這份論文之中,我們製作了兩個系列的稀土銅鋁合金(RCu4Al與 RCu3Al2,R = Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Lu)並且成功地量測其結構與電磁性質。經由X-ray繞射結構分析得知除了LuCu4Al 樣品為多相之外,其餘樣品皆為六角最密堆積的CaCu5單相結構。在磁性方面,RCu4Al 的樣品中,在低溫具有磁相變的皆為反鐵磁性,而RCu3Al2 的樣品則僅有少部分具有磁性,但是鐵磁性與反鐵磁性互見。電性方面,在大部分樣品裡磁相變的溫度皆可觀察到相對應的電阻變化,而其中兩個含有鈰的樣品(CeCu4Al、CeCu3Al2) 更是具有隨溫度下降而電阻上升的特性,經由模型分析之後應是Kondo系統。若將磁相變溫度對稀土元素的原子序作圖,則發現其曲線大致上符合de Gennes 係數,表示在這兩個系列的合金中,RKKY交互作用為主要的磁性交互作用。zh_TW
dc.description.abstractWe have successfully synthesized two series of rare earth ternary intermetallics RCu4Al and RCu3Al2 (R = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu), which crystallized in a CaCu5-derived hexagonal structure with space group P6/mmm as confirmed from the X-ray diffraction measurements. All the samples are single phase except LuCu4Al which possesses both the CaCu5 and the AuBe5 phases. The lattice parameters are deduced from the x-ray patterns, indicating that the unit cell volumes of the RCu4Al and RCu3Al2 compounds have expanded with respect to that of the corresponding RCu5 compounds due to the smaller size of Cu atoms. Besides, a tendency that the Al atom prefers the 3g site of crystal structure in larger-size rare earth compounds and favors the 2c site in smaller-size rare earth compounds is revealed.
Magnetic behavior and electrical resistivity are investigated on these compounds. Curie-Weiss law is used to calculate the effective moments of the rare earth ions in the paramagnetic state, and the Debye temperatures are derived from the resistivity plot. The reisitivity curves of CeCu4Al and CeCu3Al2 are nearly temperature independent in the high temperature range and increase logarithmically with decreasing temperature. The resistivity behaviors of the CeCu4Al and CeCu3Al2 compounds at low temperatures demonstrate both of these two are Kondo systems.
The magnetization and resistivity measurements indicate that almost all the RCu4Al compounds (R = Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm) ordered antiferromagnetically at low temperatures, and for R = Sm, Gd, Tb, and Dy, there exists magnetic reorientation at even lower temperatures. On the other hand, magnetism among the RCu3Al2 compounds is not as abundant as compared to the RCu4Al compounds. A magnetic phase transition at 12 K appears in the SmCu3Al2 compound, and GdCu3Al2 is ferromagnetic below 20 K as revealed both in the magnetization and resistivity measurements. Meanwhile, the TbCu3Al2 and DyCu3Al2 compounds become antiferromagnetic below 6 K and 5.5 K respectively. The Neel temperatures for both the RCu4Al and RCu3Al2 compounds scale with the de Gennes factor which suggests that the primary mechanism of interactions leading to the ordering of the magnetic moments may be the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:17:03Z (GMT). No. of bitstreams: 1
ntu-94-D87222002-1.pdf: 1508501 bytes, checksum: a8a59d4be791930bff05a4048151bb56 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of Contents
Abstract …………………………………………………………………………………..i
中文摘要………………………………………………………………………………....iii
Table of Content …………………………………………………………………………iv
List of Figures……………………………………………………………………………vi
List of Tables……………………………………………………………………………...x
Chapter 1. Introduction …………………………………………………………………..1
a. Magnetism in intermetallics 1
b. The Kondo systems 3
c. The AB5 intermetallics 6
d. The RCu5 isostructural compounds 10
Chapter 2. Experimental Details ………………………………………………………15
a. Sample preparation 15
b. X-ray diffraction 16
c. Electrical resistivity measurement 18
d. DC magnetic susceptibility 19
e. 3He refrigerator 20
Chapter 3. Theoretical Model…………………………………………………………...23
a. The electrical resistivity of metals and compounds 23
b. Magnetic orderings at low temperatures 27
Chapter 4. Structure, Magnetism, and Electrical Resistivity Studies on RCu4Al……...31
a. YCu4Al 32
b. LaCu4Al 34
c. CeCu4Al 36
d. PrCu4Al 39
e. NdCu4Al 42
f. SmCu4Al 45
g. GdCu4Al 49
h. TbCu4Al 53
i. DyCu4Al 56
j. HoCu4Al 60
k. ErCu4Al 63
l. TmCu4Al 66
m. LuCu4Al 70
Chapter 5. Structure, Magnetism, and Electrical Resistivity Studies on RCu3Al2……..72
a. YCu3Al2 73
b. LaCu4Al2 75
c. CeCu3Al2 77
d. PrCu3Al2 80
e. NdCu3Al2 83
f. SmCu3Al2 86
g. GdCu3Al2 90
h. TbCu3Al2 93
i. DyCu3Al2 96
j. HoCu3Al2 99
k. ErCu3Al2 102
l. TmCu3Al2 105
m. LuCu3Al2 108
Chapter 6. Discussion and Summary ………………………………………………..110
a. Crystallographic structures 110
b. Magnetic orderings 125
c. Electrical resistivity 131
References …………………………………………………………………………..134
dc.language.isoen
dc.subject電磁性質zh_TW
dc.subject稀土合金zh_TW
dc.subjectrare earthen
dc.subjectCaCu5en
dc.subjectintermetallicsen
dc.title具CaCu5結構之三元稀土銅鋁合金的電磁性質研究zh_TW
dc.titleStructure, magnetic ordering, and electrical properties of the CaCu5-derived rare earth-copper-aluminum intermetallicsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree博士
dc.contributor.oralexamcommittee姚永德,陳洋元,陳銘堯,林昭吟
dc.subject.keyword稀土合金,電磁性質,zh_TW
dc.subject.keywordrare earth,intermetallics,CaCu5,en
dc.relation.page139
dc.rights.note有償授權
dc.date.accepted2005-07-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved