Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36795
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林祥泰
dc.contributor.authorYen-Tien Tungen
dc.contributor.author董彥佃zh_TW
dc.date.accessioned2021-06-13T08:16:22Z-
dc.date.available2016-07-27
dc.date.copyright2011-07-27
dc.date.issued2011
dc.date.submitted2011-07-19
dc.identifier.citation(1) Sloan, E. D.; Carolyn, A. K. Clathrate hydrates of natural gases, 3 ed.; CRC Press: London, 2008.
(2) Kvenvolden, K. A. P Natl Acad Sci USA 1999, 96, 3420.
(3) Collett, T. S. Aapg Bull 2002, 86, 1971.
(4) Klauda, J. B.; Sandler, S. I. Mar Petrol Geol 2003, 20, 459.
(5) Klauda, J. B.; Sandler, S. I. Energ Fuel 2005, 19, 459.
(6) Holder, G. D.; Kamath, V. A.; Godbole, S. P. Annu Rev Energy 1984, 9, 427.
(7) Kang, S. P.; Lee, J. W.; Ryu, H. J. Fluid Phase Equilibr 2008, 274, 68.
(8) Li, X. S.; Wan, L. H.; Li, G.; Li, Q. P.; Chen, Z. Y.; Yan, K. F. Ind Eng Chem Res 2008, 47, 9696.
(9) Shin, K.; Park, Y.; Cha, M. J.; Park, K. P.; Huh, D. G.; Lee, J.; Kim, S. J.; Lee, H. Energ Fuel 2008, 22, 3160.
(10) Zhou, X. T.; Tao, X. H.; Liang, D. Q.; Fan, S. S. Energ Explor Exploit 2008, 26, 267.
(11) Linga, P.; Haligva, C.; Nam, S. C.; Ripmeester, J. A.; Englezos, P. Energ Fuel 2009, 23, 5508.
(12) Kumar, A.; Maini, B.; Bishnoi, P. R.; Clarke, M.; Zatsepina, O.; Srinivasan, S. J Petrol Sci Eng 2010, 70, 109.
(13) Reagan, M. T.; Moridis, G. J. Geophys Res Lett 2007, 34.
(14) Etiope, G.; Milkov, A. V.; Derbyshire, E. Global Planet Change 2008, 61, 79.
(15) Reagan, M. T.; Moridis, G. J. J Geophys Res-Oceans 2008, 113.
(16) Krey, V.; Canadell, J. G.; Nakicenovic, N.; Abe, Y.; Andruleit, H.; Archer, D.; Grubler, A.; Hamilton, N. T. M.; Johnson, A.; Kostov, V.; Lamarque, J. F.; Langhorne, N.; Nisbet, E. G.; O'Neill, B.; Riahi, K.; Riedel, M.; Wang, W. H.; Yakushev, V. Environ Res Lett 2009, 4.
(17) Galloway, T. J.; Ruska, W.; Chappele.Ps; Kobayash.R. Ind Eng Chem Fund 1970, 9, 237.
(18) Deroo, J. L.; Peters, C. J.; Lichtenthaler, R. N.; Diepen, G. A. M. Aiche J 1983, 29, 651.
(19) Sum, A. K.; Burruss, R. C.; Sloan, E. D. J Phys Chem B 1997, 101, 7371.
(20) Seo, Y. T.; Kang, S. P.; Lee, H. Fluid Phase Equilibr 2001, 189, 99.
(21) Ohmura, R.; Uchida, T.; Takeya, S.; Nagao, J.; Minagawa, H.; Ebinuma, T.; Narita, H. J Chem Thermodyn 2003, 35, 2045.
(22) Jager, M. D.; de Deugd, R. M.; Peters, C. J.; Arons, J. D.; Sloan, E. D. Fluid Phase Equilibr 1999, 165, 209.
(23) Guo, T. M.; Qiu, J. H. Abstr Pap Am Chem S 1997, 213, 38.
(24) Freer, E. M.; Selim, M. S.; Sloan, E. D. Fluid Phase Equilibr 2001, 185, 65.
(25) Qiu, J. H.; Guo, T. M. Chinese J Chem Eng 2002, 10, 316.
(26) Kashchiev, D.; Firoozabadi, A. J Cryst Growth 2003, 250, 499.
(27) Cathles, L. M.; Chen, D. F. J Geophys Res-Sol Ea 2004, 109.
(28) Lin, W.; Chen, G. J.; Sun, C. Y.; Guo, X. Q.; Wu, Z. K.; Liang, M. Y.; Chen, L. T.; Yang, L. Y. Chem Eng Sci 2004, 59, 4449.
(29) Moudrakovski, I. L.; McLaurin, G. E.; Ratcliffe, C. I.; Ripmeester, J. A. J Phys Chem B 2004, 108, 17591.
(30) Jeon, Y. H.; Kim, N. J.; Chun, W. G.; Lim, S. H.; Kim, C. B.; Hur, B. K. J Ind Eng Chem 2006, 12, 733.
(31) Sun, X. F.; Mohanty, K. K. Chem Eng Sci 2006, 61, 3476.
(32) Gualdron, D. A. G.; Balbuena, P. B. J Phys Chem C 2007, 111, 15554.
(33) Kowalsky, M. B.; Moridis, G. J. Energ Convers Manage 2007, 48, 1850.
(34) Luo, Y. T.; Zhu, J. H.; Fan, S. S.; Chen, G. J. Chem Eng Sci 2007, 62, 1000.
(35) Makogon, Y. F.; Melikhov, I. V.; Kozlovskaya, E. D.; Bozhevol'nov, V. E. Russ J Phys Chem a+ 2007, 81, 1645.
(36) Sun, C. Y.; Chen, G. J.; Ma, C. F.; Huang, Q.; Luo, H.; Li, Q. P. J Cryst Growth 2007, 306, 491.
(37) Hashemi, S.; Macchi, A.; Servio, P. Ind Eng Chem Res 2009, 48, 6983.
(38) Talaghat, M. R.; Esmaeilzadeh, F.; Fathikaljahi, J. Fluid Phase Equilibr 2009, 279, 28.
(39) Di Profio, P.; Arca, S.; Germani, R.; Savelli, G. J Fuel Cell Sci Tech 2007, 4, 49.
(40) Ganji, H.; Manteghian, M.; Mofiad, H. R. Fuel Process Technol 2007, 88, 891.
(41) Kumar, R.; Linga, P.; Moudrakovski, I.; Ripmeester, J. A.; Englezos, P. Aiche J 2008, 54, 2132.
(42) Ogawa, H.; Imura, N.; Miyoshi, T.; Ohmura, R.; Mori, Y. H. Energ Fuel 2009, 23, 849.
(43) Chialvo, A. A.; Houssa, M.; Cummings, P. T. J Phys Chem B 2002, 106, 442.
(44) English, N. J.; MacElroy, J. M. D. Journal of Computational Chemistry 2003, 24, 1569.
(45) Chihaia, V.; Adams, S.; Kuhs, W. F. Chem Phys 2005, 317, 208.
(46) Moon, C.; Taylor, P. C.; Rodger, P. M. J Am Chem Soc 2003, 125, 4706.
(47) Guo, G. J.; Zhang, Y. G.; Zhao, Y. J.; Refson, K.; Shan, G. H. J Chem Phys 2004, 121, 1542.
(48) Guo, G. J.; Zhang, Y. G.; Refson, K. Chem Phys Lett 2005, 413, 415.
(49) Guo, G. J.; Zhang, Y. G.; Liu, H. J Phys Chem C 2007, 111, 2595.
(50) Guo, G. J.; Zhang, Y. G.; Li, M.; Wu, C. H. J Chem Phys 2008, 128.
(51) Guo, G. J.; Li, M.; Zhang, Y. G.; Wu, C. H. Phys Chem Chem Phys 2009, 11, 10427.
(52) Mastny, E. A.; Miller, C. A.; de Pablo, J. J. J Chem Phys 2008, 129.
(53) Hawtin, R. W.; Quigley, D.; Rodger, P. M. Phys Chem Chem Phys 2008, 10, 4853.
(54) Walsh, M. R.; Koh, C. A.; Sloan, E. D.; Sum, A. K.; Wu, D. T. Science 2009, 326, 1095.
(55) Nada, H. J Phys Chem B 2006, 110, 16526.
(56) Vatamanu, J.; Kusalik, P. G. J Phys Chem B 2006, 110, 15896.
(57) Vatamanu, J.; Kusalik, P. G. J Am Chem Soc 2006, 128, 15588.
(58) Vatamanu, J.; Kusalik, P. G. J Phys Chem B 2008, 112, 2399.
(59) English, N. J.; MacElroy, J. M. D. J Chem Phys 2004, 120, 10247.
(60) English, N. J.; Johnson, J. K.; Taylor, C. E. J Chem Phys 2005, 123.
(61) English, N. J.; Phelan, G. M. J Chem Phys 2009, 131.
(62) Myshakin, E. M.; Jiang, H.; Warzinski, R. P.; Jordan, K. D. J Phys Chem A 2009, 113, 1913.
(63) Rodger, P. M.; Forester, T. R.; Smith, W. Fluid Phase Equilibria 1996, 116, 326.
(64) Carver, T. J.; Drew, M. G. B.; Rodger, P. M. J Chem Soc Faraday T 1995, 91, 3449.
(65) Carver, T. J.; Drew, M. G. B.; Rodger, P. M. J Chem Soc Faraday T 1996, 92, 5029.
(66) Duffy, D. M.; Moon, C.; Rodger, P. M. Mol Phys 2004, 102, 203.
(67) Hawtin, R. W.; Rodger, P. M. J Mater Chem 2006, 16, 1934.
(68) Moon, C.; Hawtin, R. W.; Rodger, P. M. Faraday Discuss 2007, 136, 367.
(69) Moon, C.; Taylor, P. C.; Rodger, P. M. Can J Phys 2003, 81, 451.
(70) San-Miguel, M. A.; Rodger, P. M. J Mol Struc-Theochem 2000, 506, 263.
(71) Storr, M. T.; Rodger, P. M. Gas Hydrates: Challenges for the Future 2000, 912, 669.
(72) Storr, M. T.; Taylor, P. C.; Monfort, J. P.; Rodger, P. M. J Am Chem Soc 2004, 126, 1569.
(73) Kvamme, B.; Huseby, G.; Forrisdahl, O. K. Mol Phys 1997, 90, 979.
(74) Anderson, B. J.; Tester, J. W.; Borghi, G. P.; Trout, B. L. J Am Chem Soc 2005, 127, 17852.
(75) Kvamme, B.; Kuznetsova, T.; Aasoldsen, K. Mol Simulat 2005, 31, 1083.
(76) Bernal, J. D.; Fowler, R. H. J Chem Phys 1933, 1, 515.
(77) Cerius2; Molecular Simulations Inc.: San Diego, 1999.
(78) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J Chem Phys 1983, 79, 926.
(79) Jorgensen, W. L.; Maxwell, D. S.; TiradoRives, J. J Am Chem Soc 1996, 118, 11225.
(80) Peters, B.; Zimmermann, N. E. R.; Beckham, G. T.; Tester, J. W.; Trout, B. L. J Am Chem Soc 2008, 130, 17342.
(81) Ota, M.; Ferdows, M. Jsme Int J B-Fluid T 2005, 48, 802.
(82) Radhakrishnan, R.; Trout, B. L. J Chem Phys 2002, 117, 1786.
(83) Cao, Z. T.; Tester, J. W.; Sparks, K. A.; Trout, B. L. J Phys Chem B 2001, 105, 10950.
(84) Cao, Z. T.; Tester, J. W.; Trout, B. L. J Chem Phys 2001, 115, 2550.
(85) Steve, P.; Paul, C.; Aidan, T. Large-Scale Atomic/Molecular Massively Parallel Simulator; Sandia National Labs: Albuquerque, 2009.
(86) Hoover, W. G. Phys Rev A 1985, 31, 1695.
(87) Hoover, W. G. Phys Rev A 1986, 34, 2499.
(88) Melchionna, S.; Ciccotti, G.; Holian, B. L. Mol Phys 1993, 78, 533.
(89) Darden, T.; York, D.; Pedersen, L. J Chem Phys 1993, 98, 10089.
(90) Hockney, R. W.; Eastwood, J. W. Computer Simulation Using Particles; Adam Hilger: New York, 1989.
(91) Pollock, E. L.; Glosli, J. Comput Phys Commun 1996, 95, 93.
(92) Fidler, J.; Rodger, P. M. J Phys Chem B 1999, 103, 7695.
(93) Baez, L. A.; Clancy, P. Ann Ny Acad Sci 1994, 715, 177.
(94) Abascal, J. L. F.; Sanz, E.; Fernandez, R. G.; Vega, C. J Chem Phys 2005, 122.
(95) Fernandez, R. G.; Abascal, J. L. F.; Vega, C. J Chem Phys 2006, 124.
(96) Abascal, J. L. F.; Vega, C. Phys Chem Chem Phys 2007, 9, 2775.
(97) Rahman, A.; Stilling.Fh. J Am Chem Soc 1973, 95, 7943.
(98) Speedy, R. J.; Mezei, M. Journal of Physical Chemistry 1985, 89, 171.
(99) Belch, A. C.; Rice, S. A. J Chem Phys 1987, 86, 5676.
(100)Speedy, R. J.; Madura, J. D.; Jorgensen, W. L. Journal of Physical Chemistry 1987, 91, 909.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36795-
dc.description.abstract我們利用三相(氣體水合物晶相,液態水相,甲烷/二氧化碳氣/液相)系統分子動態模擬,研究影響甲烷及二氧化碳水合物結晶速率(growth rate)因子。三相平衡水合物相圖成功由分子動態模擬預測並與實驗一致,因此我們的分子模擬參數及模型設計,可以正確描述氣體水合物結晶動態行為。影響水合物結晶生成速率主要為(1) 操作與平衡溫度/壓力間產生的驅動力(driving force) (2)氣體水合物在液態水相中的溶解度(solubility)(3)水分子的移動能力(mobility)。從我們的結果發現,甲烷水合物結晶速率隨著壓力(甲烷溶解度)增加而增加。另一方面,水分子的移動能力會受壓力影響或NaCl存在下改變,二氧化碳水合物結晶速率隨著壓力增加而減小,NaCl加入將明顯將低甲烷水合物結晶速率。
我們也利用分子模擬研究原地(in-situ)二氧化碳置換取代甲烷水合物機制,結果顯示,置換取代程序不需要將甲烷水合物溶解(固相中)即可進行。我們以二氧化碳液相直接接觸甲烷水合物的雙相系統進行置換模擬。置換機制會因與液固界面位置距離遠近而不同,分別為(1)甲烷與二氧化碳直接swapping(2)甲烷與二氧化碳先co-occupation,然後甲烷被推擠置換出來。在置換過中,二氧化碳將自發性經由水籠結構裂孔(opening of the cage structure)進入水籠結構進行置換,這些水籠結構裂口主要是由破損水籠結構氫鍵造成,水籠結構氫鍵破損主要原因為(1) 不穩定結構的水籠結構水分子的震盪(fluctuation)(2)氣體分子碰撞(collision)水籠結構(3)氣體分子與水籠結構水分子產生交互作用(interaction)而形成氫鍵鍵結。
zh_TW
dc.description.abstractThe key factors that affect the growth of methane and carbon dioxide hydrates from pure or aqueous NaCl solutions are identified using molecular dynamics simulations. The three-phase molecular models consisting of methane/carbon dioxide gas, liquid water, and solid hydrate phase are used in this study. The melting temperatures of pure methane and carbon dioxide hydrates are found to be in good agreement with experiment over a wide range of pressures. The growth rate of clathrate hydrate is found to be dominated by (1) the temperature and pressure driving forces (2) the solubility of gas in the liquid phase, and (3) the mobility of water molecules. From our simulation results, the growth rate of methane hydrate increases with the pressure (the solubility of gas) below the equilibrium temperature of clathrate hydrate. In addition, the mobility of water is affected by and the pressure and the presence of NaCl. The growth rate of carbon dioxide hydrate decreases with the pressure and the low growth rate of methane hydrate is found when the NaCl is added.
The mechanism of in-situ methane recovery and carbon dioxide sequestration in methane hydrate is uncovered using molecular dynamics simulations. Our results suggest that in situ conversion of methane hydrate to carbon dioxide hydrate without melting is possible. The two-phase molecular models consisting of liquid carbon dioxide and solid methane hydrate phase are used in this study. Depending on the distance to the interface, there are two replacement mechanisms (1) the swapping of methane and carbon dioxide molecules (2) co-occupation of methane and carbon dioxide molecules. The carbon dioxide spontaneously enters into the cage through the an opening of broken hydrogen bond. The break of hydrogen bond is caused by the fluctuation of water in the unstable cages, the collision of gas molecules, or the hydrogen bonding interaction between the solute and water.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:16:22Z (GMT). No. of bitstreams: 1
ntu-100-D95524016-1.pdf: 9009076 bytes, checksum: a9213debc0d095be70c3aff9464e9aa8 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要
...I
Abstract
...II
Contents
...III
Figures
...VII
Tables
...XV
1. Introdcution ...1
1.1 Clathrate
hydrates
...1
1.2 Crystalline structure of clathrate hydrate
...1
1.3 Phase diagram of clathrate hydrate
...2
1.4 Thermodynamic inhibitor
...3
1.5 Thermodynamic promoter
...4
1.6 Distribution of methane hydrate
...5
1.7 Exploitation and recovery of methane from hydrates
...7
1.8 Gas storage in hydrate form
...8
1.9 Methane replacement by carbon dioxide in hydrates
...10
1.10 Motivation ...11
Reference ...27
2. Theory
29
2.1 Molecular dynamics simulation
29
2.2 Algorithm
30
2.3 Force field
31
2.4 Valance components
32
2.5 Non-bond components
33
Reference
39
3. Computational Details
40
3.1 System of methane hydrate
42
3.2 System of carbon dioxide hydrate
44
3.3 System of the methane replacement by carbon dioxide in hydrate form
46
3.4 System of methane hydrate with the sodium chloride solution
47
3.5 Angular order parameter and cage definition
49
Reference
60
4. Growth of methane hydrate
63
4.1 Paper Review and Motivation
63
4.2 Equilibrium phase diagram
65
4.3 Growth rate of methane hydrate
66
4.4 Methane and water transport
70
4.5 Growth Mechanism of Methane Hydrate
72
4.6 Conclusions
73
Reference
88
5. Growth of carbon dioxide hydrate
92
5.1 Paper Review and Motivation
92
5.2 Equilibrium phase diagram
93
5.3 Growth rate of carbon dioxide hydrate
94
5.4 Growth mechanism
96
5.5 Emergence of 4151062 cages at the hydrate-liquid interface
98
5.6 Comparison between the growth of methane and CO2 hydrates
99
5.7 Conclusions
101
Reference
124
6. Replacement of methane by carbon dioxide in clathrate hydrate
127
6.1 Paper Review and Motivation
127
6.2 The replacement of methane by carbon dioxide
128
6.3 The cage crevice for the replacement
131
6.4 The replacement rate and efficiency
133
6.5 Conclusion
133
Reference
151
7. Growth of methane hydrate with NaCl
153
7.1 Paper Review and Motivation
153
7.2 Equilibrium phase diagram
154
7.3 Growth rate of methane hydrate
155
7.4 Insertion of chloride and sodium ions into the cage
158
7.5 Precipitation of Salt by the growth of the crystalline hydrate
163
7.6 Conclusion
164
8. Conclusion
190
dc.language.isoen
dc.subject分子動態模擬zh_TW
dc.subject水合物zh_TW
dc.subject結晶機制zh_TW
dc.subjectmolecular dynamics simulationen
dc.subjectclathrate hydrateen
dc.subjectcrystallization mechanismen
dc.title以分子動態模擬探討甲烷及二氧化碳氣體水合物結晶機制及二氧化碳置換甲烷機制zh_TW
dc.titleAtomistic Molecular Dynamics Simulations for the Growth Mechanism of Methane and Carbon Dioxide Hydrates and the Replacement Mechanismen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee吳台偉,陳延平,諶玉真,陳立仁,郭錦龍
dc.subject.keyword水合物,結晶機制,分子動態模擬,zh_TW
dc.subject.keywordclathrate hydrate,crystallization mechanism,molecular dynamics simulation,en
dc.relation.page193
dc.rights.note有償授權
dc.date.accepted2011-07-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
8.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved