Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36787
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻(Tai-Horng Young)
dc.contributor.authorYen-Ling Linen
dc.contributor.author林彥伶zh_TW
dc.date.accessioned2021-06-13T08:15:57Z-
dc.date.available2007-07-26
dc.date.copyright2005-07-26
dc.date.issued2005
dc.date.submitted2005-07-20
dc.identifier.citation1. Fine E.G., Valentini R.F., and Aebischer P. Principles of Tissue Engineering. Second Edition. New York: Academic Press, 2000; pp: 785-98.
2. Sagen J., Bunge M.B., and Kleitman N. Principles of Tissue Engineering. Second Edition. New York: Academic Press, 2000; pp: 799-820.
3. Reynolds B.A., and Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255: 1707-10.
4. Cattaneo E., and McKay R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 1990; 347: 762-5.
5. Wheatley C.H. Human physiology. Seventh edition. MC Graw Hill, 2002; pp: 150-8.
6. Campbell N.A., Reece J.B., and Mitchell L. G. Biology. Fifth Edition, 960-91.
7. Shamblott M.J., Edwards B.E., and Gearhart J.D. Principles of Tissue Engineering. Second Edition. New York: Academic Press, 2000; pp: 369-81.
8. Vacanti M.P. Principles of Tissue Engineering. Second Edition. New York: Academic Press, 2000; pp: 821-30.
9. McKay R. Stem cells in the central nervous system. Science 1997; 276: 66-71.
10. Gage F.H., Ray J., and Fisher L.J. Isolation, characterization, and use of stem cells from the CNS. Annu. Rev. Neurosci. 1995; 18: 159-92.
11. Davis A.A., and Temple S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature (London) 1994; 372: 263-6.
12. Lendahl U., Zimmerman L.B., and McKay R. CNS stem cells express a new class of intermediate filament protein. Cell (Cambridge, Mass.) 1990; 60: 585-95.
13. Reynolds B.A., and Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 1996; 175: 1-13.
14. Jessell T.M., and Melton D.A. Diffusible factors in vertebrate embryonic induction. Cell 1992; 68: 257-70.
15. McKay R. The origins of cellular diversity in the mammalian central nervous system. Cell 1989; 58: 815-21.
16. Tsai R., and McKay R. Cell contact regulates fate choice by cortical stem cells. J. Neurosci. 2000; 20 (10): 3725-35.
17. Richards L.J., Kilpatrick T.J., Dutton R., Tan S.S., Gearing D.P., Bartlett P.F., and Murphy M. Leukaemia inhibitory factor or related factors promote the differentiation of neuronal and astrocytic precursors within the developing murine spinal cord. Eur. J. Neurosci. 1996; 8: 291-9.
18. Koblar S.A., Turnley A.M., Classon B.J., Reid K.L., Ware C.B., Cheema S.S., Murphy M., and Bartlett P.F. Neural precursor differentiation into astrocytes requires signaling through the leukemia inhibitory factor receptor. Proc. Natl. Acad. Sci. USA 1998; 95: 3178-81.
19. Lillien L.E., and Raff M.C. Differentiation signals in the CNS: type-2 astrocyte development in vitro as a model system. Neuron 1990; 5: 111-9.
20. Johe K.K., Hazel T.G., Muller T., Dugich-Djordjevic M.M., and McKay R. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 1996; 10: 3129-40.
21. McMorris F.A., and Dubois-Dalcq M. Insulin-like growth factor I promotes cell proliferation and oligodendroglial commitment in rat glial progenitor cells developing in vitro. J. Neurosci. Res. 1988; 21: 199-209.
22. Temple S., and Davis A.A. Isolated rat cortical progenitor cells are maintained in division in vitro by membrane-associated factors. Development 1994; 120: 999-1008.
23. Barakat I., Sensenbrenner M., and Vincendon G. The importance of cell contact for the proliferation of neuroblasts in culture and its stimulation by meningeal extract. Neurochem. Res. 1982; 7: 287-300.
24. Gao W.O., Heintz N., and Hatten M.E. Cerebellar granule cell neurogenesis is regulated by cell-cell interactions in vitro. Neuron 1991; 6: 705-15.
25. Ghosh A., and Greenberg M.E. Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis. Neuron 1995; 15: 89-103.
26. Hatten M.E. Neuronal regulation of astroglial morphology and proliferation in vitro. J. Cell. Biol. 1985; 100: 384-96.
27. Hatten M.E. Neuronal inhibition of astroglial cell proliferation is membrane mediated. J. Cell. Biol. 1987; 104: 1353-60.
28. Pfrieger F.W., and Barres B.A. Synaptic efficacy enhanced by glial cells in vitro. Science 1997; 277: 1684-7.
29. Young T.H., and Hung C.H. Behavior of embryonic rat cerebral cortical stem cells on the PVA and EVAL substrates. Biomaterials 2005; 26: 4291-9.
30. Reynolds B.A., and Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci. 1992; 12(11): 4565-74.
31. Clemson Advisory Board for Biomaterials, “Definition of the word biomaterial,” The 6th Annual International Biomaterial Symposium, April, (1974), 20-24.
32. Suh J.-K., and Matthew H.W. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000; 21: 2589-98.
33. Senel S., and McClure S.J., Potential applications of chitosan in veterinary medicine. Advanced Drug Delivery Reviews 2004; 56: 1467-80.
34. Hendriks J.G.E., Van Horn J.R., Van Der Mei H.C., and Busscher H.J. Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials 2004; 25: 545-56.
35. Laroche G., Marois Y., Guidoin R., King M. W., Martin L., How T., and Douville Y. Polyvinylidene fluoride (PVDF) as a biomaterial: From polymeric raw material to monofilament vascular suture. J. Biomed. Mater. Res. 1995; 29: 1525-36.
36. Klee D., Ademovic Z., Bosserhoff A., Hoecker H., Maziolis G., and Erli H.-J. Surface modification of poly (vinylidenefluoride) to improve the osteoblast adhesion. Biomaterials 2003; 24: 3663-70.
37. Mulder M. Basic principles of membrane technology. Kluwer Academic Publishers, 1991.
38. Bottenstein J.E., and Sato G.H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. Natl. Acad. Sci. USA 1979; 76: 514-7.
39. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983; 65: 55-63.
40. Koh J. and Choi D. W. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J. Neurosci. Meth. 1987; 20: 83-90.
41. Mitsui K., Nakayama H., Akagi T., Nekooki M., Ohtawa K., Takio K., Hashikawa T., and Nukina N. Purification of Polyglutamine Aggregates and Identification of Elongation Factor-1α and Heat Shock Protein 84 as Aggregate-Interacting Proteins. J. Neurosci. 2002: 22 (21): 9267-77.
42. Bez A., Corsini E., Curti D., Biggiogera M., Colombo A., Nicosia R.F., Pagano S.F., and Parati E.A. Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain research 2003; 993: 18-29.
43. Solene S.-T., Chagneau C., Neveu I., Naveilhan P. Fluorescent activated cell sorting (FACS): a rapid and reliable method to estimate the number of neurons in a mixed population. J. Neurosci. Meth. 2003; 129: 73-79.
44. Wong G., Goldshmit Y., and Turnley A.M. Interferon-γ but not TNFα promotes neuronal differentiation and neurite outgrowth of murine adult neural stem cells. Exp. Neurol. 2004; 187: 171-7.
45. Le Roux P., and Reh T. Independent regulation of primary dendritic and axonal growth by maturing astrocytes in vitro. Neurosci. Lett. 1995; 198: 5-8.
46. Williams B.P. and Price J. Evidence for multiple precursor cell types in the embryonic rat cerebral cortex. Neuron 1995; 14: 1181-8.
47. Gritti A., Parati E.A., Cova L., Frolichsthal P., Galli R., Wanke E., Faravelli L., Morassutti D.J., Roisen F., Nickel D.D., and Vescovi A.L. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 1996; 16 (3): 1091-1100.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36787-
dc.description.abstract在研究中,神經幹細胞從14-15天大的Wistar大鼠胚胎大腦皮質被分離出來,並培養於無血清、含有20 ng /ml bFGF生長因子的培養基,使其增生成神經細胞團。另外,利用相轉換法中的乾式法,將幾丁聚醣、聚甲基丙烯酸甲酯和聚偏二氟乙烯製備成無孔洞的緻密型薄膜。經過6天的增生培養,將神經幹細胞團培養在幾丁聚醣、聚甲基丙烯酸甲酯和聚偏二氟乙烯三種高分子基材上,分別培養在無血清、含有20 ng /ml bFGF生長因子的培養基或是有含10﹪胎牛血清、不含bFGF生長因子的培養基中。
將神經幹細胞團培養在三種高分子基材五天中,利用光學顯微鏡觀察細胞的行為變化,並進行一連串的實驗。從光學照片中,可以觀察到神經幹細胞團在無血清、含有20 ng /ml bFGF生長因子的培養基的條件下,會隨著培養基材的不同,而有行為及型態上的差異。然而,在有含10﹪胎牛血清、不含bFGF生長因子的培養基中,神經幹細胞團培養於不同基材上卻都表現出相同的行為:細胞團中的細胞會往外遷移。而從細胞免疫螢光染色結果可以看出,無論在有無血清的培養基中,神經幹細胞在三種高分子基材上都可以分化出神經細胞、星狀細胞以及寡樹突細胞,且血清對於神經幹細胞團在三種基材上分化出來的細胞類型並沒有顯著的影響。
從結果中可以推論,或許是因為血清中的蛋白質沈澱在基材上,使不同的基材都被同樣的蛋白質覆蓋住,因此基材對神經幹細胞的行為影響幾乎不見,血清有助於神經幹細胞團的貼附,且有些細胞會從細胞團中遷移到有覆蓋蛋白質的基材上。
zh_TW
dc.description.abstractIn this study, neural stem cells were isolated from the cerebral cortices of 14-15 days embryonic Wistar rats, and propagated under serum-free medium in the presence of 20 ng /ml bFGF for 6 days. Then chitosan, poly (methyl methacrylate) (PMMA), and poly (vinylidene fluoride) (PVDF) were used as substrates to culture neurospheres under serum-free medium in the presence of 20 ng /ml bFGF or under medium with 10﹪FBS. The substrates were prepared by dry process of phase inversion method and the resulting structure of all substrates was nonporous and dense.
After culturing the neurospheres on the substrates for 5 days, the neurospheres were observed by an optical electron microscope and underwent a series of experiments. From phase contrast pictures, it was found that under serum-free condition, the neurospheres adapted different morphologies and behaviors on different substrates. However, under medium with 10﹪FBS, the neurospheres exhibited the same behaviors on different substrates: the cells in the neurospheres migrated outward. Further, in the result of indirect immunocytochemical staining we found that the neurospheres could differentiate into neurons, astrocytes, and oligodendrocytes on all of the three substrates with or without the serum. Moreover, the presence or the absence of the serum in the medium did not influence the differentiation pathway of cells in the neurosphere.
From the experimental results, it was concluded that same set of proteins in the FBS precipitated and covered the surfaces of each of the substrates; thus the influences of different substrates on the neurospheres almost disappeared. Further, the cells in the neurosphere exhibited the tendency to migrate outward to get in touch with the proteins that covered the substrates.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:15:57Z (GMT). No. of bitstreams: 1
ntu-94-R92548023-1.pdf: 8247738 bytes, checksum: 8525908fdf9316d652965417c5932317 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents摘要 I
Abstract III
Contents V
Tables VIII
Figures IX
Chapter 1 Introduction 1
Chapter 2 Paper review 2
2-1. Neural stem cells 2
2-1-1. Introduction of nervous system 2
2-1-2. Introduction of neural stem cells 4
2-1-3. Application of neural stem cells 5
2-1-4. Factors influence the behavior of neural stem cells 6
2-2. Biomaterials 8
2-2-1. Chitosan 8
2-2-2. Poly (methyl methacrylate) (PMMA) 10
2-2-3. Poly (vinylidene fluoride) (PVDF) 11
2-3. Polymer membranes 12
2-3-1. The definition of membrane 12
2-3-2. The preparation of membrane 12
2-3-3. The structure of membrane 14
Chapter 3 Materials and Methods 15
3-1. Materials 15
3-2. Instruments 18
3-3. Preparation of solution 20
3-4. Preparation of membranes 23
3-4-1. Preparation of chitosan membrane 23
3-4-2. Preparation of PMMA membrane 23
3-4-3. Preparation of PVDF membrane 24
3-5. Isolation and purification of neural stem cells 25
3-6. Identification of neural stem cells 27
3-7. Culturing of neural stem cells 28
3-7-1. Preparetion of polymer membranes 28
3-7-2. Culturing of neural stem cells 28
3-8. Evaluation of cell viability (MTT) 29
3-9. Evaluation of cell cytotoxicity (LDH) 30
3-10. Indirect immunocytochemical staining 31
3-11. Quantification of different kinds of cells 32
3-12. Measurement of process length 32
3-13. Measurement of process thickness 32
3-14. BrdU incorporation 33
3-15. Flow cytometry 34
Chapter 4 Results and Discussion 36
4-1. Identification of neural stem cells 36
4-2. Neurospheres (serum-free) 37
4-2-1. Behaviors of neural stem cells on polymer substrates 37
4-2-2. The measurement of process length 39
4-2-3. The measurement of process thickness 39
4-2-4. The differentiation of neural stem cells 40
4-2-5. Quantification of different kinds of cells 41
4-2-6. BrdU incorporation 42
4-2-7. Cell viability test (MTT assay) 43
4-2-8. Cell cytotoxicity test (LDH assay) 43
4-3. Neurospheres (10﹪FBS) 45
4-3-1. Behaviors of neural stem cells on polymer substrates 45
4-3-2. The differentiation of neural stem cells 46
4-3-3. Quantification of different kinds of cells 47
Chapter 5 Conclusion 48
References 50
Appendix 74
Part A: single neural stem cells 74
A-1 Culture of single neural stem cells 74
A-2 MTT assay 74
A-3 LDH assay 75
Part B: Flow cytometry 76
Table 1 Percentage of different cell types in the neurospheres under serum-free condition. 55
Table 2 Percentage of different cell types in the neurospheres under medium with 10﹪FBS 55
Figure 4-1 Neurospheres cultured on poly-D-lysine-coated cover slips for 4 hr, and immunocytochemical stained with anti-nestin 56
Figure 4-2 Neurospheres cultured on poly-D-lysine-coated cover slips for 24 hr, and immunocytochemical stained with (a) anti-GFAP and (b) anti-MAP2 56
Figure 4-3 Neurospheres cultured on chitosan membranes under serum-free medium with 20 ng /ml bFGF (a) Day 1 (b) Day 3 (c) Day 5 57
Figure 4-4 Neurospheres cultured on PMMA membranes under serum-free medium with 20 ng /ml bFGF (a) Day 1 (b) Day 3 (c) Day 5 58
Figure 4-5 Neurospheres cultured on PVDF membranes under serum-free medium with 20 ng /ml bFGF (a) Day 1 (b) Day 3 (c) Day 5 59
Figure 4-6 Process length of neurospheres cultured on chitosan, PMMA, and PVDF membranes under serum-free medium with 20 ng /ml bFGF 60
Figure 4-7 Process thickness of neurospheres cultured on chitosan, PMMA, and PVDF membranes under serum-free medium with 20 ng /ml bFGF 60
Figure 4-8 Neurospheres cultured on chitosan membranes under serum-free medium with 20 ng /ml bFGF for 5 days, and stained with (a) anti-GFAP (b) anti-MAP2 (c) anti-tubulin (d) anti-O4 61
Figure 4-9 Neurospheres cultured on PMMA membranes under serum-free medium with 20 ng /ml bFGF for 5 days, and stained with (a) anti-GFAP (b) anti-MAP2 (c) anti-tubulin (d) anti-O4 62
Figure 4-10 Neurospheres cultured on PVDF membranes under serum-free medium with 20 ng /ml bFGF for 5 days, and stained with (a) anti-GFAP (b) anti-MAP2 (c) anti-tubulin (d) anti-O4 63
Figure 4-11 Neurospheres cultured on chitosan membranes under serum-free medium with 20 ng /ml bFGF and stained with anti-BrdU (a) Day 1 (b) Day 3 (c) Day 5 64
Figure 4-12 Neurospheres cultured on PMMA membranes under serum-free medium with 20 ng /ml bFGF and stained with anti-BrdU (a) Day 1 (b) Day 3 (c) Day 5 65
Figure 4-13 Neurospheres cultured on PVDF membranes under serum-free medium with 20 ng /ml bFGF and stained with anti-BrdU (a) Day 1 (b) Day 3 (c) Day 5 66
Figure 4-14 MTT assay of neurospheres cultured on chitosan, PMMA, and PVDF membranes under serum-free medium with 20 ng /ml bFGF 67
Figure 4-15 LDH assay of neurospheres cultured on chitosan, PMMA, and PVDF membranes under serum-free medium with 20 ng /ml bFGF 67
Figure 4-16 Neurospheres cultured on chitosan membranes under 10﹪FBS without 20 ng /ml bFGF (a) Day 1 (b) Day 3 (c) Day 5 68
Figure 4-17 Neurospheres cultured on PMMA membranes under 10﹪FBS without 20 ng /ml bFGF (a) Day 1 (b) Day 3 (c) Day 5 69
Figure 4-18 Neurospheres cultured on PVDF membranes under 10﹪FBS without 20 ng /ml bFGF (a) Day 1 (b) Day 3 (c) Day 5 70
Figure 4-19 Neurospheres cultured on chitosan membranes under 10﹪FBS without 20 ng /ml bFGF for 5 days, and stained with (a) anti-GFAP (b) anti-MAP2 (c) anti-NF 150 (d) anti-O4 71
Figure 4-20 Neurospheres cultured on PMMA membranes under 10﹪FBS without 20 ng /ml bFGF for 5 days, and stained with (a) anti-GFAP (b) anti-MAP2 (c) anti-NF 150 (d) anti-O4 72
Figure 4-21 Neurospheres cultured on PVDF membranes under 10﹪FBS without 20 ng /ml bFGF for 5 days, and stained with (a) anti-GFAP (b) anti-MAP2 (c) anti-NF 150 (d) anti-O4 73
Figure A-1 Single neural stem cells cultured on chitosan membranes under serum-free medium with 20 ng /ml bFGF (a) Day 1 (b) Day 3 (c) Day 5 77
Figure A-2 Single neural stem cells cultured on PMMA membranes under serum-free medium with 20 ng /ml bFGF (a) Day 1 (b) Day 3 (c) Day 5 78
Figure A-3 Single neural stem cells cultured on PVDF membranes under serum-free medium with 20 ng /ml bFGF (a) Day 1 (b) Day 3 (c) Day 5 79
Figure A-4 MTT assay of single neural stem cells cultured on chitosan, PMMA, and PVDF membranes under serum-free medium with 20 ng /ml bFGF 80
Figure A-5 LDH assay of single neural stem cells cultured on chitosan, PMMA, and PVDF membranes under serum-free medium with 20 ng /ml bFGF 80
Figure B-1 Flow cytometry of neurospheres cultured on chitosan membranes under serum-free medium with 20 ng /ml bFGF for 5 days (b) FL1: anti-GFAP (c) FL2: anti-nestin 81
Figure B-2 Flow cytometry of neurospheres cultured on PMMA membranes under serum-free medium with 20 ng /ml bFGF for 5 days (b) FL1: anti-GFAP (c) FL2: anti-nestin 82
Figure B-3 Flow cytometry of neurospheres cultured on PVDF membranes under serum-free medium with 20 ng /ml bFGF for 5 days (b) FL1: anti-GFAP (c) FL2: anti-nestin 83
Figure B-4 Flow cytometry of neurospheres cultured on chitosan membranes under serum-free medium with 20 ng /ml bFGF for 5 days (b) FL1: anti-NF 150 (c) FL2: anti-O4 84
Figure B-5 Flow cytometry of neurospheres cultured on PMMA membranes under serum-free medium with 20 ng /ml bFGF for 5 days (b) FL1: anti-NF 150 (c) FL2: anti-O4 85
Figure B-6 Flow cytometry of neurospheres cultured on PVDF membranes under serum-free medium with 20 ng /ml bFGF for 5 days (b) FL1: anti-NF 150 (c) FL2: anti-O4 86
dc.language.isoen
dc.subject聚甲基丙烯酸甲酯zh_TW
dc.subject神經幹細胞zh_TW
dc.subject幾丁聚醣zh_TW
dc.subject聚偏二氟乙烯zh_TW
dc.subject生醫材料zh_TW
dc.subject間接免疫螢光細胞染色zh_TW
dc.subjectPVDFen
dc.subjectchitosanen
dc.subjectneural stem cellen
dc.subjectindirect immunocytochemical stainingen
dc.subjectPMMAen
dc.subjectbiomaterialen
dc.title神經幹細胞在不同高分子薄膜上行為之研究zh_TW
dc.titleBehaviors of neural stem cells on chitosan, PMMA, and PVDF membranesen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫一明,鄭廖平,謝松蒼
dc.subject.keyword神經幹細胞,幾丁聚醣,聚甲基丙烯酸甲酯,聚偏二氟乙烯,生醫材料,間接免疫螢光細胞染色,zh_TW
dc.subject.keywordneural stem cell,chitosan,PMMA,PVDF,biomaterial,indirect immunocytochemical staining,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2005-07-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
8.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved