請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36772完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張倉榮 | |
| dc.contributor.author | Mei-Shan Lin | en |
| dc.contributor.author | 林玫珊 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:15:12Z | - |
| dc.date.available | 2005-07-26 | |
| dc.date.copyright | 2005-07-26 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-20 | |
| dc.identifier.citation | Adams, E.W. and Rodi, W., 1990. Modeling flow and mixing in sedimentation tanks. J. Hydr. Engrg., Vol. 116, No. 7, pp 895-913.
Choi, Sung-UK and Kang, Hyeongsik, 2004. Reynolds stress modeling of vegetated open-channel flows. J. Hydr. Res., Vol. 42, No. 1, pp 3-11. Dunn, C, Lopez, F. and Garcia, M., 1996. Mean flow and turbulence in a laboratory channel with simulated vegetation. Rep.51, Hydr. Engrg. Ser., Univ, of Ill, Urbana. Faure, J.-B., Buil, N. and Gay, B., 2004. 3-D Modeling of unsteady free-surface flow in open channel. J. Hydr. Res., Vol. 42, No. 3, pp 263-272. Hirt, C.W. and Nichols, B.D., 1981. Volume of Fluid (VOF) method for the dynamics of free surface boundaries. J. Comput. Phys., 201-225. Kaimal, J. and Finnigan, J., 1994. Atmospheric Boundary Layer Flows. Oxford Univ. Press. New York. Launder, B.E. and Spalding, D.B., 1974. The numerical computation of turbulent flow. Computer Methods in Applied Mechanics and Engineering, 269-289. Lopez, F. and Garcia, M.H., 2001. Mean flow and turbulence structure of open channel through non-emergent vegetation. J. Hydr. Engrg., Vol. 127, No. 5, pp 392-402. Lee, J.K., Roig, L.C., Jenter, H.L. and Visser, H.M., 2004. Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades. Ecological Engineering, Vol. 22, pp 237-248. Ma, Lin, Ashworth, Philip J., Best, James L., Elliott, L., Ingham, Derek B. and Whitcombe, Leslie J., 2002. Computational fluid dynamics and the physical modeling of an upland urban river. Geomorphology, Vol. 44, pp 375-391. Mudd, S.M. and Furbish, D.J., 2002. Feedbacks between flow, sedimentation, and standing biomass on salt-marsh platforms. Fall Meet. Suppl., EOS Trans., Vol. 83, No. 47, Abstract H52A-0847. Nepf, H.M, 1999. Drag turbulence and diffusion in flow through emergent vegetation. Water Resources Res., Vol. 35, No. 2, pp. 479-489. Nepf, H.M. and Vivoni, E.R., 2000. Flow structure in depth-limited, vegetated flow. Geophy. Res., Vol. 105, No. 12, pp. 547-557. Salaheldin, Tarek M., Imran, Jasim and Chaudhry, M. Hanif, 2004. Numerical modeling of three-dimensional flow field around circular piers. J. Hydr. Engrg., Vol. 130, No. 2, pp 91-100. Wilson, J.D., 1985. Numerical studies of flow through a windbreak. J. of Wind Engrg. and Ind. Aerodyn., Vol. 21, pp 119-154. Wu, Fu-Chun, Hsieh, Shen-Wen and Chou, Yi-Ji, 1999. Variation of roughness coefficients for unsubmerged and submerged vegetation. J. Hydr. Engrg. Vol. 125, No. 9, pp 934-942. Wu, Y., Falconer, R. A., Struve, J., 2001. Mathematical modeling of tidal currents in mangrove forests. Environmental Modelling and Software, Vol. 16, pp 19-29. 王如意、易任,1979。「應用水文學」,國立編譯館出版,茂昌圖書出版,pp.407~412。 張尊國,蔡慧萍,2005。「生態工法規範訂定之探討」,農業工程學報,第51卷,第1期,12-26。 鍾茞歆,2004。「作物倒伏風險之生物力學模擬與風洞試驗研究」,國立台灣大學生物環境系統工程學研究所碩士論文。 謝怡芳,2004。「三維度紊流大渦模擬在多區間建築物室內環境風場之應用研究」,國立台灣大學生物環境系統工程學研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36772 | - |
| dc.description.abstract | 本研究之主要目的為模擬三維度自由液面水流流場受植栽帶的阻滯效應,以及對植栽帶流場作水理分析,並以水稻田為例,探討植栽帶對調蓄洪水與下游出口流量之影響。在研究中,採用有限體積法(finite volume method)離散控制方程式,以一階準確上風法離散對流項,二階準確中央差分法展開壓力項與黏滯擴散項,由PISO法耦合速度和壓力,使整個流場符合質量守恆及動量守恆,再由κ-ε紊流模式配合體積分率法處理三維度自由液面水流流場,最後再應用孔隙介質流理論模擬水田區植栽帶對水流的阻滯效應。
本研究透過與Nepf 及Vivoni (2000)的實驗值比對,模擬具植栽帶之自由液面明渠流的平均流速(mean velocity)、紊流方均根速度(turbulent rms velocity)及紊流黏滯性(turbulent eddy viscosity),發現驗證結果相當吻合。而植物的密度因子會因為植栽種類的不同和種植密度的差異而改變,因此本研究亦施作一組實驗量測符合台灣地區水稻田種植條件的密度因子,再由實驗所得到的參數,輸入研究案例進行數值模擬。 研究案例分為單坵塊水田區和三坵塊水田區,結果顯示水田區在休耕時期可有效地提供調蓄洪水之功能,可調節逕流抵達渠道出水口時間約渠道放水時間之20%。此外植栽高度愈高則阻水效應愈明顯,30cm以上之水稻植栽可降低約10% ~ 26%之洪峰流量,延緩洪峰到達時間為休耕時期的21.4%,而洪峰過後的流量則較休耕時期為高,洪水在洪峰過後緩緩地流出水田區,使得流量歷線重新分配,因此水田區兼具調蓄洪水與調滯洪水的功能,調洪效果良好。 | zh_TW |
| dc.description.abstract | The main objective of this study is to investigate the 3-D free-surface flow with plant canopies from an ecological viewpoint, and analyze the flow field within plants so as to research how the plant canopy affect the outflow in downstream of the study field. We select the finite volume method to discretize the governing equations of our model. PISO scheme is used to adjust flow field to satisfy the continuity equation. The κ-ε model is adopted to simulate the 3-D turbulence flow field in the study, and apply the volume of fluid concept in modeling multiphase flow with water and air through porous media to procure the water-damping effect of the plant .
The κ-ε turbulence model is firstly verified by the experimental measurement given by Nepf and Vivoni (2000). The numerical results are in good agreement with the experimental data for the mean velocity, turbulent root-mean-square velocity, and eddy viscosity. Since the canopy density is different for various plants and plant densities, a series of experiments of the canopy density in paddy field for different rice growth periods are carried out. The experimental results are further input into the CFD model. Our study includes two cases, one is single paddy field and the other is tri-paddy field. The simulated result shows that the field of no paddy has good flood detention function, and delays the time to peak over 20%. And the higher of the plant is, the well water-damping effect of the plant is. For the paddy field having the height of rice over 30cm, it reduces the flood flow rate about 10% ~26%, and holds the time to peak over 21% compared to the field without paddy. Furthermore, paddy field redistributes flow discharge distribution. Therefore the paddy field indeed provides flood mitigation and detention function. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:15:12Z (GMT). No. of bitstreams: 1 ntu-94-R92622034-1.pdf: 825086 bytes, checksum: 91ab9d8fd9cfd8b12932072ffb822dd0 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III 目錄 V 圖目錄 VII 表目錄 X 第一章、緒論 1 1.1前言 1 1.2研究動機 2 1.3前人研究 3 第二章、數學模式 6 2.1 k-ε紊流模式 6 2.2 體積分率法 8 2.3孔隙介質流理論 9 2.4底床邊界與邊牆函數 10 第三章、數值方法 13 3.1 數值模擬架構 13 3.2有限體積法的網格系統 14 3.3控制方程式的離散方法 15 3.4收斂條件 15 3.5邊界條件設定 16 3.5.1 自由液面邊界 16 3.5.2入流及出流邊界 17 3.6網格的建立 18 第四章、模式驗證 21 4.1水流通過植栽帶的實驗架構介紹 21 4.2水流通過植栽帶紊流模式驗證 22 第五章、水稻密度因子實驗 28 5.1水稻生長週期基本介紹 28 5.2水稻密度因子介紹 28 5.3水稻密度因子試驗流程 29 5.4影像分析方法分段量測水稻迎面區域 29 5.5試驗結果與分析 30 5.6水稻阻力係數的估算 31 第六章、應用案例介紹與結果討論 54 6.1研究案例介紹 54 6.2模擬結果與討論 56 6.2.1研究案例一在無植栽時期之蓄洪功能 57 6.2.2研究案例一在不同水稻植栽生長時期之阻水效應 58 6.2.3研究案例二在無植栽時期之蓄洪功能 60 6.2.4研究案例二在不同水稻植栽生長時期之阻水效應 60 第七章、結論與建議 73 7.1結論 73 7.2建議 74 參考文獻 76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 孔隙介質 | zh_TW |
| dc.subject | 有限體積法 | zh_TW |
| dc.subject | κ-ε紊流模式 | zh_TW |
| dc.subject | 體積分率法 | zh_TW |
| dc.subject | volume of fluid | en |
| dc.subject | κ-ε turbulence model | en |
| dc.subject | finite volume method | en |
| dc.title | 計算生態流體力學在三維度自由液面植栽帶流場之應用研究 | zh_TW |
| dc.title | Application of Ecological CFD on 3-D Free-Surface Flow
with Plant Canopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張文亮,張尊國,陳主惠 | |
| dc.subject.keyword | 有限體積法,κ-ε紊流模式,體積分率法,孔隙介質, | zh_TW |
| dc.subject.keyword | finite volume method,κ-ε turbulence model,volume of fluid, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 805.75 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
