Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36765
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧虎生(Huu-Sheng Lur)
dc.contributor.authorYu-Hsin Changen
dc.contributor.author張予馨zh_TW
dc.date.accessioned2021-06-13T08:14:52Z-
dc.date.available2007-07-01
dc.date.copyright2005-07-22
dc.date.issued2005
dc.date.submitted2005-07-20
dc.identifier.citation高佑靈, 劉麗飛, 盧虎生(1993)玉米胚乳發育前期荷爾蒙cytokinin 與auxin 的分佈變化。碩士論文。國立台灣大學農藝學研究所。
陳凱儀,盧虎生(1992)胚乳發育過程中基因表現調控之研究:AUXIN在玉米胚乳發育中基因表現之調控。行政院國家科學委員會專題計畫成果報告。國立台灣大學農藝系。
Alba` MM, Page`s M (1998) Plant proteins containing the RNA-recognition motif. Trends Plant Sci 3: 15– 21
Azevedo RA, Damerval C, Landry J, Lea PJ, Bellato CM, Meinhardt LW, Guilloux ML, Delhaye S, Toro AA, Gaziola SA, Berdejo BDA (2003) Regulation of maize lysine metabolism and endosperm protein synthesis by opaque and floury mutations. Eur J Biochem 270: 4898-4908
Ben-Cheikh W, Perez-Botella J, Tadeo FR, Talon M, Primo-Millo E (1997) Pollination increases gibberellin levels in developing ovaries of seeded varieties of citrus. Plant Physiol 114: 557-564
Berkelman T, Stenstedt T (1998) 2- D Electrophoresis using immobilized pH gradients: Principles and methods. Amersham Pharmacia Biotech, Piscataway, NJ
Bernier F, Berna A (2001) Germins and germin-like proteins: plant do-all proteins. But what do they do exactly? Plant Physiol Biochem 39: 545-554
Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson1 SA, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian KD, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Du¨ sterho¨ A, Moores Jones JDG, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes HW, Klosterman S,Schueller C, Chalwatzis N (1998) Analysis of 1.9Mb of contiguous sequence from chromosome4 of Arabidopsis thaliana. Nature 391: 485-493
Bewley JD, Black M (1994) Seeds. Physiology of development and germination. Chap2, p74-83


Borisjuk L, Walenta S, Weber H, Mueller-Klieser W, Wobus U (1998) High-resolution histographical mapping of glucose concentrations in developing cotyledons of Vicia faba in relation to mitotic activity and storage processes: glucose as a possible developmental trigger. Plant J 15: 583-591
Caliskan M, Turwt M, Cuming AC (2004) Formation of wheat (Triticum aestivum L.) embryogenic callus involves peroxide-generating germin-like oxalate oxidase. Planta 219: 132-140
Campo S, Carrascal M, Coca M, Abian J, San Segundo B (2004) The defense response of germinating maize embryos against fungal infection: a proteomics approach. Proteomics 4: 383-396
Carter C, Thornburg RW (2000) Tobacco Nectarin Ⅰ. Purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissue. J Biol Chem 275: 36726-36733
Chaudhury AM, Koltunow A, Payne T, Luo M, Tucker MR, Dennis ES, and Peacock WJ (2001) Control of early seed development. Annu Rev Cell Dev Biol 17: 677-699
Clore AM, Dannenhoffer JM, and Larkins BA (1996) EF-1α is associated with a cytoskeletal network surrounding protein bodies in maize endosperm cells. Plant Cell 8: 2003-2014
Consoli L, Damerval C (2001) Quantification of individual zein isoforms resolved by two-dimensional electrophoresis: genetic variability in 45 maize inbred lines. Electrophoresis 22: 2983-2989
Dietrich JT, Morris RO (1992) Isolation of stage-specific transcripts from developing maize endosperm (abstract No.184). Plant Physiol 99: S-31
Dolfini SF, Landoni M, Tonelli C, Bernard L, Viotti A (1992) Spatial regulation in the expression of structural and regulatory storage-protein genes in Zea mays endosperm. Dev Genet 13:264-276
Doll J, Hause B, Demchenko K, Pawlowski K, Krajinski F (2003) A member of the germin-like protein family is a highly conserved mycorrhiza-specific induced gene. Plant Cell Physiol 44: 1208-1214
Emes MJ, Bowsher CG, Hedley C, Burrell MM, Scrase-Field ESF, Tetlow IJ (2003) Starch synthesis and carbon partitioning in developing endosperm. J Exp Bot 54: 569-575

Esen A(1986) Separation of alcohol-soluble protein (zeins) from maize into three fractions by differential solubility. Plant Physiol 80: 623-627
Fan Z, Gu H, Chen X, Song H, Wang Q, Liu M, Qu LJ, Chen Z (2005) Cloning and expression analysis of Zmglp 1, a new germin-like protein gene in maize. Biochem Biophys Res Commun 331: 1257-1263
Ficcadenti N, Sestili S, Pandolfini T, Cirillo C, Rptino L G., Spena A (1999) Genetic engineering of parthenocarpic fruit development in tomato. Mol Breed 5:463-470
Finnie C, Melchior S, Roepstorff P, Svensson B (2002) Proteome analysis of grain filling and seed maturation in barley. Plant Physiol 129: 1308-1319
Fry SC (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 332: 507-515
Gallardo K, Signor CL, Vandekerckhove J, Thompson RD, Burstin J (2003) Proteomics of Medicago truncatula seed development establish the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133: 664-682
Geetha KB, Lending CR, Lopes MA, Wallace JC, Larkins BA (1991) opaque-2 modifiers increase γ-zein synthesis and alter its spatial distribution in maize endosperm. Plant Cell 3: 1207-1219
Gibbon BC, Zonia LE, Kovar DR, Hussey PJ, Staiger CJ (1998) Pollen profilin function depends on interaction with proline-rich motifs. Plant Cell 10: 981-993
Goddemeier ML, Wulff D, Feix G (1998) Root-specific expression of a Zea mays gene encoding a novel glycine-rich protein , zmGRP3. Plant Mol Biol 36: 799-802
Guiltinan MJ, Niu X (1996) cDNA encoding a wheat (Triticum aestivum, cv Chinese spring) glycine-rich nucleic acid-binding protein. Plant Mol Biol 30: 1301-1306
Guo BZ, Cleveland TE, Brown RL, Widstrom NW, Lynch RE, Russin JS (1999) Distribution of antifungal proteins in maize kernel tissue using immunochemistry. J Food Prot 62: 295-299
Gustafson FG (1936) Inducement of fruit development by growth-promoting chemicals. Proc Natl Sci USA 22: 628-636


Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomics study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137: 1397-1419
Hanfrey C, Fife M, Buchanan-Wollaston V (1996) Leaf senescence in Brassica napus : expression of genes encoding pathogenesis-related proteins. Plant Mol Biol 30: 597-609
Heine MA, Rankin ML, DiMario PJ (1993) The Gly/ Arg-rich (GAR) domain of Xenipus nucloelin facilitates in vitro nucleic acid binding and in vivo nucleolar localization. Mol Biol Cell 4:1189-1204
Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11: 601-613
Hill LM, Morley-Smith ER, Rawsthorne S (2003) Metabolism of sugars in the endosperm of developing seeds of oilseed rape. Plant Physiol 131: 228-236
Ho LC (1988) Metabolism and compartmentation of imported sugars in sink organ in relation to sink strength. Annu Rev Plant Physiol Plant Mol Biol 39: 355-378
Hobbie L, Timpte C, Estelle M (1994) Molecular genetics of auxin and cytokinin. Plant Mol Biol 26: 1499-1519
Huynh QK, Borgmeyer JR, Zobel JF (1992) isolation and characterization of a 22kDa protein with antifungal properties from maize seeds. Biochem Biophys Res Commun 15: 1-5
Jakubowska A, Kowalczyk S (2004) The auxin conjugate 1-O-indole-3-acetyl-β-D-glucose is synthesized in immature legume seeds by IAGlc synthase and may be used for modification of some high molecular weight compounds. J Exp Bot 55: 791-801
Khoo U, Wolf MJ (1970) Origin and development of protein granules in maize endosperm. Amer J Bot 57: 1042-1050
Kim HJ, Triplett BA (2004) Cotton fiber germin-like protein.I.molecular cloning and gene expression. Planta 218: 516-524
Kovar DR, Drøbak BK, Staiger CJ (2000) Maize profilin isoform are functionally distinct. Plant Cell 12: 583-598
Kowles RV, Phillips RL (1988) Endosperm development in maize. Int Rev Cytol 112: 97-136

Lane BG (1991) Cellular desiccation and hydration: developmentally regulated proteins, and the maturation and germination of seed embryos. FASEB J 5: 2893-2901
Larkins BA, Wallace JC, Galili G, Lending CR, Kawata EE (1989) Structural analysis and modification of zein storage proteins. J. Ind. Microbiol 30: 203-209
Lending CR, Larkins BA (1989) Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1: 1011-1023
Letham DS (1994) Cytokinin as phytohormones : sites of biosynthesis, translocation and function of translocated cytokinin. In DWS Mok, MC Mok, eds, Cytokinins Chemistry, Activity and Function. CRC Press, Boca Raton, FL 57-80
Lin SK, Chang MC, Tsai YG, Lur HS (2005) Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics 5: 2140-2156
Lopes MA, Larkins BA (1991) Gamma-zein content is related to endosperm modification in Quality Protein Maize. Crop Sci 31: 1655-1662
Lur HS (1990) The regulation of endosperm development by auxin in maize (Zea mays L.) Ph.D. dissertation, Cornell University, Ithaca, New York.
Lur HS, Setter TL (1993 a) Endosperm development of maize defective kernel (dek) mutants. Auxin and cytokinin levels. Ann Bot 72:1-6
Lur HS, Setter TL (1993 b) Role of auxin in maize endosperm development. Plant Physiol 103: 273-280
Mechin V, Balliau T, Chateau-Joubert S, Davanture M, Langella O, Negroni L, Prioul JL, Thevenot C, Zivy M, Damerval C (2004) A two-dimensional proteome map of maize endosperm. Phytochemistry 65: 1609-1618
Membre’ N, Bernier F (1998) The rice genome expresses at least six different genes for oxalate oxidase/ germin-like proteins (Genbank AF032971, AF032972, AF032973, AF03294, AF03295, AF03296) (PGR98-021). Plant Physiol 116: 868
Membre’ N, Bernier F, Staiger D, Berna A (2000) Arabidopsis thaliana germin-like proteins: common and specific features point to a variety of functions. Planta 211: 345-354


Muller M, Dues G, Balconi C, Salamini F, Thompson RD (1997) Nitrogen and hormonal responsiveness of the 22kDa aloha-zein and b-32 genes in maize endosperm is displayed in the absence of the transcriptional regulator Opaque-2. Plant J 12: 281-291
O’Farrell PZ, Goodman HM, O’Farrell K (1977) High resolution two - dimensional electrophoresis of basic as well as acidic protein. Cell 12: 1133-1142
Okita TW (1992) Is there an alternative pathway for starch synthesis ? Plant Physiol 100: 560-564
Ou-Lee TM, Setter TL (1985) Effect of increased temperature in apical regions of maize ears on starch-synthesis enzymes and accumulation of sugars and starch. Plant Physiol 79: 852-855
Patrick JW, Offler CE (1995) Post-sieve element transport of sucrose in developing seed. Aust J Plant Physiol 22: 681-702
Polito VS (1999) Seedlessness and parthenocarpy in Pistacia Vera L. (Anacardiaceae): Tempral change in patterns of vascular transport to ovule. Ann Bot 83: 363-368
Rakwal R, Komatsu S (2000) Role of jasmonate in the rice (Oryza sativa L.) self-defense mechanism using proteome analysis. Electrophoresis 21: 2492-2500
Richard S, Drevet C, Jouanin L, Seguin A (1999) Isolation and characterization
of a cDNA clone encoding a putative white spruce glycine –rich RNA binding protein. Gene 240: 379–388
Rodrigo MJ, and García-Martínez JL (1998) Hormonal control of parthenocarpic ovary growth by the apical shoot in pea. Plant Physiol 116: 511-518
Rotino GL, Perri E, Zottini M, Sommer H, Spena A (1997) Genetic engineering of parthenocarpic plants. Nature Biotech 15: 1398-1401
Schopfer P, Liszkay A, Bechtold M, Frahry G, Wagner A (2002) Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214: 821-828
Schweikert C, Liszkay A, Schopfer P (2002) Polysaccharide degradation by Fenton reaction –or peroxidase-generated hydroxyl radicals in isolated plant cell walls. Phytochemistry 61: 31-35


Scott CP, Thomas SN, Daniel H, Alejandro L, Fred M, Thomas B (2001) Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. The Plant Cell 13: 1467-1475
Serna A, Maitz M, O'Connell T, Santandrea G, Thevissen K, Tienens K, Hueros G, Faleri C, Cai G, Lottspeich F, Thompson RD (2001) Maize endosperm secretes a novel antifungal protein into adjacent maternal tissue. Plant J 25: 687-698
Setter TL, Flannigan BA (1989) Relationship between photosynthate supply and endosperm development in maize. Ann Bot 64: 481-487
Setter TL, Flannigan BA, Melkonian J (2001) Loss of Kernel Set Due to Water Deficit and Shade in Maize: Carbohydrate Supplies, Abscisic Acid, and Cytokinins. Crop Sci 41: 1530-1540
Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7: 945-956
Singh BK, Jenner CF (1984) Association between concentrations of organic nutrients in the grain, endosperm cell number and grain dry weight within the ear of wheat. Austr J Plant Physiol 2: 83-95
Stephen JR, Dent KC, Finch-Savage WE (2003) A cDNA encoding a cold –induced glycine-rich RNA binding protein from Prunus avium expressed in embryonic axes. Gene 320: 177-183
Talon M, Hedden P, Primo-Millo E (1990) Gibberellins in Citrus sinensis: acomparison between seeded and seedless varieties. J Plant Growth Regul 9: 201-206
Tobias RB, Boyer CD, Shannon JC (1992) Alteration in carbohydrate intermediates in the endosperm of starch-deficient maize (Zea mays L.) genotypes. Plant Physiol 99: 146-152
Tsai CY, Salamini F, Nelson OE (1970) Enzymes of carbohydrate metabolism in the developing endosperm of maize. Plant Physiol 46: 299-306
Vallelian-Bindschedler L, Mosinger E, Metraux JP, Schweizer P (1998) Structure, expression and localization of a germin-like protein in barley (Hordeum vulgare L.) that is insolubilized in stressed leaves. Plant Mol Bio 38: 1179-1190


Vensel WH,Tanaka CK, Cai N, Wong JH, Buchanan BB, Hurkman WJ (2005) Developmental changed in the metabolic protein profiles of wheat endosperm. Proteomics 5: 1594-1611
Verburg JG, Smith CE, Lisek CA, Huynh QK (1992) Identification of an essential tyrosine residue in the catalytic site of a chitinase isolated from Zea mays that is selectively modified during inactivation with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. J Chem 267: 3886-3893
Vermel M, Guermann B, Delage L, Grienenberger JM, Mare´chal Drouard L, Gualberto JM (2002) A family of RRM-type RNA binding proteins specific to plant mitochondria. Proc Natl Acad Sci USA 99: 5866– 5871
Vivian-Smith A, Koltunow M(1999) Genetic analysis of growth regulator induced parthenocarpy in Arabidopsis. Plant Physiol 121: 437-451
Yang J, Zhang J, Huang Z, Wang Z, Zhu Q, Liu L (2002) Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Ann Bot 90: 369-377
Yang T, Poovaiah BW (2000) Molecular and biochemical evidence for the involvement of Calcium/Calmodulin in auxin action. J Biol Chem 275: 3137-3143
Young TE, Juvik JA, Sullivan JG, Skirvin RM (1990) An in vitro method for screening for the presence of the pat-2 gene in tomatoes (Lycopersicon esculentum Mill.) Plant Cell Rep 8:538-541
Zielinski R (1998) Calmodulin and Calmodulin-binding proteins in plant. Annu Rev Plant Physiol Plant Mol Biol 49: 697-725
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36765-
dc.description.abstract生長素(auxin)在穎果發育中是重要的調控物質,參與調控細胞分化與細胞擴大的功能。本研究利用蛋白質體分析技術,比較處理生長素類調節劑2,4-D與正常授粉的玉米穎果之蛋白質體表現差異,探討生長素在玉米穎果發育中的分子作用機制。
本試驗以玉米品種台南22號為試驗材料,栽培於田間或溫室中,在玉米雌穗花絲尚未吐出前予以套袋,再分別進行授粉或2,4-D處理,另外以未授粉也未處理2,4-D的穎果做為對照組。在處理或授粉之後1天、3天、5天、9天、12天取穎果,測定鮮、乾重、水分含量、葡萄糖與蔗糖含量、醇溶性蛋白質含量與SDS-PAGE分析,並進行蛋白質雙向電泳分析。從建立不同發育時期之玉米穎果的總蛋白質體圖譜,與經由2,4-D處理、授粉和對照組的相互比較,找出差異表現的蛋白質,並探討這些蛋白質參與生長素作用於穎果發育之生理功能。
試驗的結果顯示,2,4-D處理可誘導玉米穎果發生類似單性結果(parthenocarpic-like)的生長現象。處理2,4-D的玉米穎果在早期(1到5天)的鮮乾重、水分含量以及糖類(葡萄糖和蔗糖)的增加較正常授粉的穎果更為快速,但在處理5天之後,處理2,4-D之玉米穎果的各項生理現象漸漸停止。由形態的觀察顯示,auxin雖可促進果皮和珠心組織的生長,但沒有胚及胚乳組織發生的現象;處理2,4-D的玉米穎果中也無法偵測到胚乳細胞分化的指標,亦即澱粉和儲藏性蛋白質zein的累積。這暗示著2,4-D可能促進玉米穎果的早期生長,使穎果成為一個明顯的積儲(sink),快速累積光合作用產物;但單只有生長素的作用尚無法使玉米穎果發育成一個正常且成熟的種子,也顯示有其他的授粉訊息在調控穎果的發育。
以蛋白質雙向電泳技術分析2,4-D處理和授粉的玉米穎果蛋白質體表現,發現在第3天之後,開始有germin-like protein 1的表現,且此蛋白質在正常授粉和2,4-D處理的穎果中皆有表現,對照未授粉的穎果,推論此蛋白質應是受到auxin所誘導,參與在穎果細胞擴大的過程中;在5天之後,有三個蛋白質在膠片上被觀察到,分別是calmodulin、glycine-rich RNA binding protein 1和profilin。此三個蛋白質,如同germin-like protein1的表現,都隨正常授粉和2,4-D處理的穎果生長而表現,故此三者應該也是和auxin的作用相關。其中,calmodulin可能與auxin的訊息傳導有關,profilin則可能是因細胞內的鈣離子濃度變化,參與細胞支架的重組,至於glycine-rich RNA binding protein 1在本試驗中,只能推測其可能受到auxin所誘導,其實際作用與功能仍未知。此外,正常授粉的穎果隨著時間上的發育,開始有澱粉和儲藏性蛋白質的累積,而處理的穎果則沒有,可見上述4個蛋白質並非穎果胚乳發育成熟的關鍵蛋白質,應該還有其他的授粉訊息非經由auxin的途徑,使穎果得以生長分化,此部分還需進一步的試驗證明。另外,在授粉12天之穎果蛋白質雙向電泳中,糖解相關酵素表現量大幅增加,推測是為提供旺盛細胞活動所需之能量。在未授粉也未處理2,4-D之對照組穎果,在發育時間第5天時,有chitinase A和22K antifungal protein大量表現,可能參與在未授粉穎果之衰化過程中,保護其不受病害感染有關。
本試驗中,初步建立的早期玉米穎果發育蛋白質雙向電泳圖譜,已有40個蛋白質被確定身份,其中33個為授粉12天之穎果表現的蛋白質,其他7個為對照組第5天所特定表現的蛋白質。以授粉12天之穎果來說,佔大多數的是代謝類的蛋白質,其次是和訊息傳遞相關的蛋白質以及抗氧化酵素,這些都是未來探討玉米穎果發育之分子機轉的有用的資訊。
zh_TW
dc.description.abstractAuxin is one of key regulators for physiological processes during maize caryopsis growth and development, including cell division, cell enlargement, and dry matter accumulation. The main objective of this study was to study the molecular basis of auxin’s function on maize caryopsis development, using proteome analysis technique.
A maize cultivar (Tainan 22, TN22) was grown in the field or greenhouse. At silking, maize ears were either treated with a synthetic auxin 2, 4-D or hand pollinated. And kernels which were not treated with 2, 4-D and handed - pollination were used as the controls for comparison. Kernels were sampled at 1, 3, 5, 9, and 12 days after treatment or pollination, and than stored at -80℃ for analysis. Changes of fresh weight, dry weight, water content, sugar content, alcohol soluble protein, and starch staining pattern were measured. To determine the expression patterns of maize kernel proteins, a high resolution two - dimensional gel electrophoresis was used. Differential expressed proteins were further sampled and identified by ESI-Q-TOF MS.
The result showed that 2,4-D could induce a parthenocarpic-like growth. The rates of fresh weight, dry weight , water content, and sugar accumulation in 2,4-D treated kernels were faster than that of pollinated kernels during early developing stage (1~5 days after treatment). After 5 days of development, the physiological processes were decreased. In morphological observation, the auxin could promote pericarp and nucellus growth. However, no endosperm organ and the accumulation of starch and storage protein (zein) could be detected in 2,4-D induced parthenocarpic kernels. This suggested that auxin can promote a fast growth of unpollinated maize caryopsis during early developing stage, but it could not enable the caryopsis to develop into a functional seed.
With 2-D gel analysis, several proteins were up-regulated by 2,4-D and were identified, including: germin-like protein 1, calmodulin, glycine-rich RNA binding protein 1, and profilin. Germin-like protein 1 expressed in kernels of 3 days after 2,4-D treatment and in kernels of 3 days after pollination (DAP). The other proteins expressed later in kernels of 5 days after 2,4-D treatment and in kernels of 5 DAP. The function of these proteins may be correlated with the auxin induced signal transduction and rapid tissue growth. In pollinated kernels several glycolytic related enzymes were identified from kernels at 12 DAP, for example, G 3-P dehydrogenase and fructose bisphosphate aldolase. These proteins have been suggested to be involved in energy supply for the growing cell activity. Significant expressions of chitinase A and 22K antifungal proteins were interestingly observed in unpollinated and degenerating kernels, which might be related to the protection of infection during senescence of caryopsis without pollination.
In this study, 40 proteins in kernel of early developing stage were identified. The proteome profiles will facilitate future studies addressing the effects of genetic and environmental factors on the development and quality of maize kernels.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:14:52Z (GMT). No. of bitstreams: 1
ntu-94-R92621112-1.pdf: 6160907 bytes, checksum: 80730eb1872ca16c56a60c76befdf6f6 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents圖表目錄 …………………………………………………i
縮寫字對照表 …………………………………………………ii
中文摘要 …………………………………………………iii
英文摘要 …………………………………………………v
前言 …………………………………………………1
前人研究 …………………………………………………3
論文試驗推論 …………………………………………………9
材料與方法 …………………………………………………10
結果 …………………………………………………21
討論 …………………………………………………58
參考文獻 …………………………………………………67
dc.language.isozh-TW
dc.subject蛋白質體學zh_TW
dc.subject玉米穎果發育zh_TW
dc.subject生長素zh_TW
dc.subject單性結果zh_TW
dc.subjectparthenocarpyen
dc.subjectmaize kernel developmenten
dc.subjectauxinen
dc.subjectprofilinen
dc.subject4-Den
dc.subjectGLP1en
dc.title以蛋白質體學研究授粉與2,4-D處理之玉米穎果早期發育之蛋白質表現zh_TW
dc.titleProteomic study on protein expressions of pollinated and 2,4-D treated kernels in maize (Zea mays L.)en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee宋濟民(Jih-Min Sung),黃懿秦(Yih-Ching Huang),鄭石通(Shih-Tong Jeng)
dc.subject.keyword玉米穎果發育,生長素,單性結果,蛋白質體學,zh_TW
dc.subject.keywordmaize kernel development,auxin,2,4-D,parthenocarpy,GLP1,profilin,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2005-07-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
6.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved