請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36757
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張國柱 | |
dc.contributor.author | Yi-Li Cho | en |
dc.contributor.author | 卓怡利 | zh_TW |
dc.date.accessioned | 2021-06-13T08:14:29Z | - |
dc.date.available | 2005-08-02 | |
dc.date.copyright | 2005-08-02 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-20 | |
dc.identifier.citation | Abe T, Ohga Y, Nobuoki T, Kobayashi S, Sakata S, Misawa H, Tsuyushi T, Kohzuki H, Suga H, Taniguchi S, Takaki M. Left ventriculr diatolic dysfunction in type 2 diabetes mellitus model rats. Am J Phyiol Heart Circ Physiol 2002; 282: H138-H148.
Abiru T, Watanabe Y, Kamata K, Kasuy Y. Changes in endothlium-depenent relextion and levels of cyclic nucleotides in the perfuse mesenteric arterialbed from streptozotozin-induced diabetic rats. Life Science 1993; 53: 7-12. Avolio A. Hemodynamic studies and modelling of the mammalian arterial system(PhD thesis). Sydney, Australia: Univ. of New South Wales 1976; Bardell A, Macleod K. Evidence for inducible nitric-oxide synthase expressionand activity in vaculr smooth muscle of streptozotozin-diabetic rats. JPET, the journal of pharmcologyand experimental therapeutic 2001; 269: 252-259. Bierhaua A, Chevion S, Chevion M, et al. Advanced glycation end product-induced activation of NFκB is suppressed by α-lipoic acid in cultured endothelial cells. Diabetes 1997;46:1481-90 Bouche C, Serdy S, Kahn CR, Goldfine AB. The cellular fate of glucose and its relevance in type 2 diabetes. Endocr Rev. 2004 Oct;25(5):807-30. Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A. Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking.Science. 1986 Jun 27;232(4758):1629-32. Burattini R, Fioretti S, Jetto L. A simple algorithm for defining the mean cardiac cycle of aortic flow and pressure during steady state. Comput Biomed Res 1985; 18: 303-312. Cai L, Kang Y. Oxidative tress nd diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol 2001; 1: 181-93. Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC, Tikellis C, Ritchie RH, Twigg SM, Cooper ME, Burrell LM. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res. 2003 Apr 18;92(7):785-92. Cantini C, Kieffer P, Corman B, Liminana P, Atkinson J, Lartaud-Idjouadiene I. Aminoguanidine and aortic wall mechanics, structure, and composition in aged rats. Hypertension. 2001 Oct;38(4):943-8. Carbonell L, Salom M, Garcia-Estan J, Salazer F, Ubeda M, Quesada T. Hemodynamic alterations in chronically conscious unrestrained diabetic rats. Am J Physiol Heart Circ Physiol 1987; 525: H900-H905. Carl J, Wilmer W. Aortic input impedance in cardiovascular disease. Prog Cardiovasc Dis 1982; 4: 307-318. Chang KC, Hsu KL, Chou TF, Lo HM, Tseng YZ. Aminoguanidine prevents age-related deterioration in left ventricular-arterial coupling in Fisher 344 rats. Br J Pharmacol. 2004 Aug;142(7):1099-104. Charonis AS, Reger LA, Dege JE, et al. Laminin alterations after in vitro nonenzymatic glycosylation. Diabetes 1988;39:807-14 Corman B, Duriez M, Poitevin P, Heudes D, Bruneval P, Tedgui A, Levy BI. Aminoguanidine prevents age-related arterial stiffening and cardiac hypertrophy. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1301-6. Darkow Dj, Lu L, White Re. Estrogen relaxation of coronary artery smooth muscle is mediated by nitric oxide and cGMP. Am J Phyiol Heart Circ Physiol 1997; 41: H2765-H2773. Esposito K, Marfella R, Giugliano D. Hyperglycemia and heart dysfunction: an oxidant mechanism contributing to heart failure in diabete. J. Endocrinol. Invest. 2002; 25: 485-488. Forbes JM, Yee LT, Thallas V, Lassila M, Candido R, Jandeleit-Dahm KA, Thomas MC, Burns WC, Deemer EK, Thorpe SM, Cooper ME, Allen Gaballa MA, Raya TE, Hoover CA, Goldman S. Effects of endothelial and inducible nitric oxide synthases inhibition on circulatory function in rats after myocardial infarction. Cardiovasc Res. 1999 Jun;42(3):627-35. Forbes JM, Thallas V, Thomas MC, Founds HW, Burns WC, Jerums G, Cooper ME. The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J. 2003 Sep;17(12):1762-4. Epub 2003 Jul 18. Garber A. Atenuating CV risk fctors in patients with diabetes: clinicl evidence to clinicl practice. Diabetes Obes Metab 2002; Jan 4; suppl 1: 5-12. Hasan K, Heeden B-J, Corbett JA, McDaniel ML,Chang K, Allison W,et al. Inhibition of nitric oxide formation by guanidines. Eur J Pharmacol 1993;249:101-6 Goldstein BJ. Insulin resistance: from benign to type 2 diabetes mellitus. Rev Cardiovasc Med. 2003;4 HaHebden Ra, Gardiner Sm, Bennett T, Macdonald Ia. The influence of streptozptocin-induced diabetes mellitus on fluid and electrolyte handling in rats. Clin. Sci 1986; 70: 111-117. Henry RM, Kostense PJ, Dekker JM, Nijpels G, Heine RJ, Kamp O, Bouter LM, Stehouwer CD. Carotid arterial remodeling: a maladaptive phenomenon in type 2 diabetes but not in impaired glucose metabolism: the Hoorn study. Stroke. 2004 Mar;35(3):671-6. Epub 2004 Feb 12. Herrmann KL, McCulloch AD, Omens JH. Glycated collagen cross-linking alters cardiac mechanics in volume-overload hypertrophy. Am J Physiol Heart Circ Physiol. 2003 Apr;284(4) Huijberts MS, Wolffenbuttel BH, Boudier HA, Crijns FR, Kruseman AC, Poitevin P, Levy BI. Aminoguanidine treatment increases elasticity and decreases fluid filtration of large arteries from diabetic rats. J Clin Invest. 1993 Sep;92(3):1407-11. Jiwa F. Diabetes in the 1990s -- an overview. Stat Bull Metrop Insur Co 1997; 78: 2-8. Johnstone M, Creager S, Scales K, Cusco J, Lee B, Creager M. Impaired endothelium-dependent vasodilation in patient with insulin-dependent diabetes mellitus. circulation 1993; 88: 2510-2516. Junod A, Lambert Ae, Orci L, Pictet R, Gonet Ae, Renold Ae. Studies of the diabetogenic action of streptozotocin. Proc. Soc. Exp. Biol. Med. 1967; 126: 201-205. Kass DA, Shapiro EP, Kawaguchi M, Capriotti AR, Scuteri A, deGroof RC, Lakatta EG. Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation. 2001 Sep 25;104(13):1464-70. King GL, Shiba T, Oliver J, Inoguchi T, Bursell SE. Cellular and molecular abnomalities in the vascular endothelium of diabetes mellitus. Annu Rev Med 1994;45:179-88 Kimball T, Daniels S, Khoury P, Magnotti R, Turner A, Dolan L. Cardiovascular status in young patients with insulin-dependent diabetes mellitus. Circulation 1994; 90: 357-361. Koya D, King GL. Protein kinase C activation and the development of the diabetic mellitus. Diabetes 1998;47:859-66 Laxminarayan S, Sipkema P, Westerhof N. Characterization of the arterial system in the time-domain. IEEE Trans Piomed Eng 1978; 25: 177-184. Li YM, Steffes M, Donnelly T, Liu C, Fuh H, Basgen J, Bucala R, Vlassara H. Prevention of cardiovascular and renal pathology of aging by the advanced glycation inhibitor aminoguanidine. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3902-7. Lin YT, Tseng YZ, Chang KC. Aminoguanidine prevents fructose-induced arterial stiffening in Wistar rats: aortic impedance analysis. Exp Biol Med (Maywood). 2004 Nov;229(10):1038-45. Liu Z, Brin K, Yin F. Estimation of total arterier compliance: an improved method and evaluation of current methods. Am J Physiol 1986; 251: H588-H600. Makino A, Oda S-I, Kamata K. Machenisms underlying increased release of endothelin-1 from aorta in diabetic rats. Pepties 2001; 22: 639-645. Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17(1):24-38. Review. Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, Novelli M, Ribes G. Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes. 1998 Feb;47(2):224-9. McCance DR, Dyer DG, Dunn JA, Bailie KE, Thorpe SR, Baynes JW, Lyons TJ. Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest. 1993 Jun;91(6):2470-8. Mcdowell Ts, Chpleau Mw, Hajduczok G, Abboud Fm. Baroreflex dysfunction in diabetes mellitus I. selective impairment of parasympathetic controlof heart rate. Am J Phyiol Heart Circ Physiol 1994; 35: H235-H243. Meng J, Sakata N, Takebayashi S, Asano T, Futata T, Araki N, Horiuchi S. Advanced glycation end products of the Maillard reaction in aortic pepsin-insoluble and pepsin-soluble collagen from diabetic rats. Diabetes. 1996 Aug;45(8):1037-43. Milnor Wr. Arterial impedance as ventricular afterload. Circ Res 1975; 36: 565-570. Mitchell G, Pfeffer M, Westeshof N, Pfeffer J. Measurement of aortic imput impedance in rats. Am J Physiol 1994; 267: H1907-H1915. Mizushige K, Yao L, Noma T, Kiyomoto H, Yu Y, Hosomi N, Ohmori K, Matsuo H. Alteration in left ventriculrt diatolic filling and accumlation of myocrdil collagen t iulin-resistant prediabetic stage of a type II diabetic rat modol. circultion 2000; 101: 899-907. Munch G, Keis R, Wessels A, Riederer P, Bahner U, Heidland A, Niwa T, Lemke HD, Schinzel R. Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. Eur J Clin Chem Clin Biochem. 1997 Sep;35(9):669-77. Nekooeian Aa, Pang Cc. Strogen restores role of basal nitric oxide in control of vascular tone in rats with chronoc heart failure. Am J Phyiol Heart Circ Physiol 1998; 43: H2094-H2099. Nesto RW. The relation of insulin resistance syndromes to risk of cardiovascular disease. Rev Cardiovasc Med. 2003;4 Suppl 6:S11-8. Nichols W, Pepine C, Geiser E. Vascular load defined by the aortic input impedance spectrum. Fed Proc 1980; 39: 196-210. Nishio Y, Kashiwagi A. Molecular mechanisms of endothelial dysfunction in diabetes mellitus.Nippon Rinsho. 2001 Dec;59(12):2451-9. Nilsson BO. Biological effects of aminoguanidine: an update. Inflamm Res. 1999 Oct;48(10):509-15. Review. Novelli M, Fabregat ME, Fernandez-Alvarez J, Gomis R, Masiello P. Metabolic and functional studies on isolated islets in a new rat model of type 2 diabetes. Mol Cell Endocrinol. 2001 Apr 25;175(1-2):57-66. O'rourke M. Arterial hemodynamics in hypertension. Circ. Res 1970; 16, suppl.: 123-133. Parving H, Viberti G, Keen H, Christiansen J, Lassen N. Hemodynamic factors in the genesis of diabetic microangiopathy. Metabolism 1983; 32: 943-949. Penckofer S, Schwertz D, Florczak K. Oxidative stress and cardiovascular disease in type 2 diabetes: the role of antioxidant and pro-oxidants. J Cardiovasc Nurs 2002; 16: 68-85. Peng Y, Chang K. Acute effects of methoxamine on left ventricular-arterial coupling in streptozotocin-diabetic rats: a pressure-volume analysis. Can J Physiol Pharm 2000; 78: 415-422. Ramanathan T, Shirota K, Morita S, Nishimura T, Huang Y, Zheng X, Hunyor S. left ventrical oxygen utilization efficiency is impaired in chronic straptozotocin-diabetic sheep. Cardiovascular reschearch 2002; 55: 749-756. Reckelhoff Jf. Gender differences in the regulation of blood pressure. Hypertension 2001; 37: 1199-1208. Ritchie SA, Ewart MA, Perry CG, Connell JM, Salt IP. The role of insulin and the adipocytokines in regulation of vascular endothelial function. Clin Sci (Lond). 2004 Dec;107(6):519-32. Reddy GK. AGE-related cross-linking of collagen is associated with aortic wall matrix stiffness in the pathogenesis of drug-induced diabetes in rats. Microvasc Res. 2004 Sep;68(2):132-42. Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection.Diabetes. 2003 Mar;52(3):581-7. Review. Rodriguez-Manas L, Angulo J, Vallejo S, Peiro C, Sanchez-Ferrer A, Cercas E, Lopez-Doriga P, Sanchez-Ferrer CF. Early and intermediate Amadori glycosylation adducts, oxidative stress, and endothelial dysfunction in the streptozotocin-induced diabetic rats vasculature. Diabetologia. 2003 Apr;46(4):556-66. Epub 2003 Mar 12. Roeters Van Lennep Je, Westerveld Ht, Erkelens Dw, Van Der Wall Ee. Risk factors for coronary heart disease: implications of gender. Cardiovascular Research 2002; 53: 538-549. Rosen P, Ballhausen T, Stockklauser K. Impairment of endothelium dependent relaxation int he diabetic rat heart: mechanisms and implications. Diabetes research and clinical practice 1996; 31, suppl.: s143-s155. Ross J, Covell J, Sonnenbuck E, Braunwald E. contractiloe state of the heart charecterized by force-velocity relations in variable afterload and isovolumic beats. Circ Res 1966; 18: 149-163. Sajithlal GB, Chithra P, Chandrakasan G.. Advanced glycation end products induce crosslinking of collagen in vitro. Biochim Biophys Acta. 1998 Sep 30;1407(3):215-24. Safar ME, Laurent P. Pulse pressure and arterial stiffness in rats: comparison with humans. Am J Physiol Heart Circ Physiol. 2003 Oct;285(4):H1363-9. Review. No abstract available. Schiel R, Franke S, Appel T, Voigt U, Ross IS, Kientsch-Engel R, Stein G, Muller UA. Improvement in quality of diabetes control and concentrations of AGE-products in patients with type 1 and insulin-treated type 2 diabetes mellitus studied over a period of 10 years (JEVIN). J Diabetes Complications. 2003 Mar-Apr;17(2):90-7. Schiffrin EL. Vascular stiffening and arterial compliance: implications for systolic blood pressure. Am J Hypertens. 2004 Dec;17(12 Pt 2):39S-48S. Schmid-Schonlein H , Volger E. Red-cell aggregation and red-cell deformability in diabetes. Diabetes 1976; 25 Suppl 2: 897-902. Sell D, Monnier VM. Structure elucidation of senescence cross-link from human extracellularmatrix: implication of pentoses in the aging process. J Biol Chem 1989;264:21597-602 Sims TJ, Rasmussen LM, Oxlund H, Bailey AJ. The role of glycation cross-links in diabetic vascular stiffing. Diabetologia 1996;39:946-51 Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001 Feb;44(2):129-46. Review. Erratum in: Diabetologia 2002 Feb;45(2):293. Sixpkema P, Westerhof N, Randall O. The arterial system characterized in the time domain. Cardiovas Res 1980; 14: 270-279. Standley P, Ali S, Bapna C, Sowers J. Increased platelet cytosolic calcium responses to low density lipoprotein in type II diabetes with and without hypertension. Am J Hypertens 1993; 6: 398-943. Stadler K, Jenei V, Somogyi A, Jakus J. Beneficial effects of aminoguanidine on the cardiovascular system of diabetic rats. Diabetes Metab Res Rev. 2005 Mar-Apr;21(2):189-96. Taegtmeyer H, Mcnulty P, Young Me. Adaptation and maladaptation of heart in diabetes: part I general concepts. circulation 2002; 105: 1727-1733. Takagi Y, Kashiwagi A, Tanaka Y, Asahina T, Kikkawa R, Shigeta Y. Significance of fructose-induced protein oxidation and formation of advanced glycation end product. J Diabetes Complications. 1995 Apr-Jun;9(2):87-91. Takhashi K, Ghatei M, Lam H-C, O'halloran D, Bloom S. Elevated plasma endotheliun in patients with diabetes mellitus. Diabetologia 1990; 33: 36-310. Tan KC, Chow WS, Ai VH, Metz C, Bucala R, Lam KS. Advanced glycation end products and endothelial dysfunction in type 2 diabetes. Diabetes Care. 2002 Jun;25(6):1055-9. Tanaka Y, Tran PO, Harmon J, Robertson RP. A role for glutathione peroxidase in protecting pancreatic beta cells against oxidative stress in a model of glucose toxicity.Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12363-8. Epub 2002 Sep 6. Taylor Aa. Pathophysiology of hypertension and endothelial dysfunction in patients with diabetes mellitus. Endocrinology and metabolism clinics of North America 2001; 30: 983-997. Ting Ct, Brin Sj, Lin Sp, Wang Sp, Chang Ms, Chiang Bn, Yin Fcp. Arterial hemodynemics in human hypertension. J. Clin. Invest 1986; 78: 1462-1471. TJ. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes. 2004 Jul;53(7):1813-23. Turk Z, Misur I, Turk N, Benko B. Rat tissue collagen modified by advanced glycation: correlation with duration of diabetes and glycemic control. Clin Chem Lab Med. 1999 Aug;37(8):813-20. Tomlinson K, Gardiner S, Hebden R, Bennett T. Functional consequences of streptozotocin-induced diabetes mellitus, with particular reference to the cardiovascular system. Pharmacol Rev 1992; 44: 103-150. Tooke JE, Hannemann MM. Adverse endothelial function and the insulin resistance syndrome. J Intern Med. 2000 Apr;247(4):425-31. Review Vlassara H. Advanced glycation end=products and atherosclerosis. Ann Med 1996;28:419-26 Vasan S, Foiles P, Founds H. Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch Biochem Biophys. 2003 Nov 1;419(1):89-96. Vranes D, Cooper Me, Dilley Rj. Cellulr mechanism of diabetic vasculr hypertrophy. Microvasculr Research 1999; 5: 8-18. Vriese Asd, Verbeuren Tj, Voorde Jvd, Lameire Nh, Vanhoutte Pm. Endothelial dysfunction in diabetes. British journal of pharmacology 2000; 130: 963-974. Westerhof N, Sipkema P, Van Den Bos G, Elzinga G. Forward and backward waves in the arterial system. Cardiovasc Res 1972; 6: 648-656. Wildhirt SM, Schulze C, Conrad N, Kornberg A, Horstman D, Reichart B. Aminoguanidine inhibits inducible NOS and reverses cardiac dysfunction late after ischemia and reperfusion--implications for iNOS-mediated myocardial stunning. Thorac Cardiovasc Surg. 1999 Jun;47(3):137-43. Williamson J, Chang K, Tilton R, Kilo C. Models for studying diabetic complications. Pathophysiology and Therapy. New York: Springer-Verlag 1989; 142?51. Zatz R, Brenner B. Pathogenesis of diabetic microangiopathy: the hemodynamic view. Am J Med 1986; 80: 443-453. Wrobel K, Wrobel K, Garay-Sevilla ME, Nava LE, Malacara JM. Novel analytical approach to monitoring advanced glycosylation end products in human serum with on-line spectrophotometric and spectrofluorometric detection in a flow system. Clin Chem. 1997 Sep;43(9):1563-9. Zuckerman B, Yin F. Aortic impedance and compliance in hypertensive rats. Am J Physiol Heart Circ Physiol 1989; 257: H553-H562. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36757 | - |
dc.description.abstract | 長存於活結締組織之非酵素進展醣化最終產物的形成 (formation of advanced glycation end products, AGEs) 可能是糖尿病導致動脈管硬化、血管窄縮以及血管壁上膠原蛋白硬化等併發症的原因之一。1998年Masiello等人發展第二型糖尿病之一新鼠模式,此實驗症候群相較於其他動物模式更接近人類第二型糖尿病之臨床特徵。本實驗之主要目的乃在檢測長期投與Aminoguanidine (AG) 可否透過抑制AGEs的形成以改善高血糖所誘發動脈血行力學(如血管壁的彈性以及波反射現象)的變化。八週大成鼠禁食40小時之後先給予腹腔注射180 mg/kg之nicotinamide (NA) 以保護胰島素β細胞,30分鐘之後再靜脈注射50 mg/kg streptozotocin (STZ) 以誘發非胰島素相依型尿糖病,並以年齡匹配之正常鼠作為對照組別。此外,每天給予STZ-NA糖尿病鼠腹腔注射50 mg/kg AG,為期四週和八週作為治療組,並與無治療之糖尿病鼠相比較。在以180 mg/kg劑量的前處理下,我們發現NA可防止老鼠因STZ所造成體重的減輕、過高的血糖以及過低的胰島素等現象。此實驗症候群呈現輕微且穩定的高血糖及出現葡萄糖耐受性不良等現象。相較於正常組,第八週而非第四週之糖尿病鼠在血壓沒有改變的情況下,心輸出量的下降可導致周邊阻力(Rp) 的增加 (54.9 ± 2.5 v.s. 65.8 ± 2.8 mmHg·s·ml-1, P<0.05)。脈態參數方面,第八週之糖尿病鼠顯示特徵阻抗( Zc ) 增加 (從1.489 ± 0.105增至1.952 ± 0.091 mmHg·s·ml-1, P<0.05) 且波傳輸時間 (t) 變短 (從25.8 ± 1.2減至20.6 ± 0.9 ms, P<0.05)。增加的特徵阻抗和變短的波傳輸時間提供動脈管壁延展性 (Distensibility) 變差的指標。此外,波反射強度的增加可以從波傳輸時間變短及波反射係數增加 (Rf,0.49 ± 0.03 v.s. 0.61 ± 0.04, P<0.05) 得知。經由八週投與AG治療後,週邊阻力下降18%,驗証了AG可以改善糖尿病阻力性血管的物理特性。此外,硬化的糖尿病主動脈也可經由AG的投與而獲得顯著的改善 (特徵阻抗減少了18.7%、波傳輸時間增加了21.8%)。波傳輸時間的增加及波反射係數的下降 (22.9%) 顯示AG可改善高血糖所導致左心室收縮負荷的增加。另外,心室重量以體重校正後之比值 (心室肥厚的指標) 亦可經由AG投與後而減少,這顯示糖尿病所導致的心室肥厚可因AG降低心室後負荷的作用而獲得改善。然而,與正常組相較,第四週之糖尿病鼠不論是彈性血管或是阻力性血管之力學特性並沒有顯著差異。本實驗之結論:在發病第八週而非第四週之第二型糖尿病鼠,其動脈血流的物理特性可因高血糖而受到傷害。AG投與8週之後,推測糖尿病鼠血流力學的改善是AG經由抑制動脈管壁AGEs的形成以改善動脈管壁的延展性。 | zh_TW |
dc.description.abstract | A new experimental type 2 diabetic syndrome, which is closer to human non-insulin-dependent diabetes mellitus, has been reported in adult rats administered streptozotocin (STZ) and partially protected with a suitable dose of nicotinamide (NA). The accelerated formation of advanced glycation end products (AGEs) on long-lived connective tissue may account for some of the complications of diabetes such as stiffing of collagen, vascular narrowing, and arterial stiffing. In this study, we determined the effects of long-term treatment with aminoguanidine (AG), an inhibitor of AGEs formation, on hemodynamic parameters describing arterial wall elasticity and pulse wave reflection in STZ-NA diabetic rats. Rats at 2 months were given NA 180mg/Kg i.p., 30 mins before an intravenous injection of 50mg/Kg STZ . This STZ-NA rats before use, and compared with the untreated age-matched controls. Mean while, the STZ-NA diabetic rats were treated for 4 (STZ-NA4) and 8 weeks (STZ-NA8) with AG (daily peritoneal injections of 50 mg/kg) and compared with the untreated diabetic groups. At 180 mg/Kg, NA largely prevented STZ-induced body weight loss, hyperglycemia, and hypoinsulinemia in the rats with diabetes. In comparison with controls, the STZ-NA rats of 8 weeks but not 4 weeks after induction of diabetes showed a decrease in cardiac output in the absence of any significant changes in mean aortic pressure, having increased total peripheral resistance (Rp), at 54.9±2.5 versus 65.8±2.8mmHg•s•ml-1 (P<0.05).The STZ-NA8 diabetes also contributed to an increase in aortic characteristic impedance (Zc), from 1.489±0.105 to 1.952±0.091 mmHg.s.ml-1 (P<0.05) and a decrease in wave transit time (τ), from 25.8±1.2 to 20.6±0.91 ms (P<0.05). The elevated Zc and the reduced τ suggest that STZ-NA8 diabetic rats may have a detrimental effect on aortic distensibility. Meanwhile, the heavy reflection intensity occurred in rats with STZ-NA of 8 weeks diabetes because of the diminished τ and the increased wave reflection factor (Rf) (0.49±0.03 versus 0.61±0.04, P<0.05). After exposure to AG, the STZ-NA8 diabetic rats exhibited a significant improvement in physical properties of the resistance vessels, as evidenced by the reduction of 18.1﹪in Rp. Meanwhile, AG retarded the diabetes-induced decline in aortic distensibility, as reflected in the decrease of 18.7﹪ in Zc (P<0.05) and the increase of 21.8﹪inτ(P<0.05). AG also prevented the diabetes-induced augmentation in systolic loading condition for the left ventricle coupled to the arterial system, due to the increased τand the decreased Rf (-22.9﹪). Moreover, the ratio of LV weight to body weight was lowered by AG treatment, suggesting that the prevention of the diabetes-related cardiac hypertrophy may correspond to the drug-induced decline in LV systolic load. By contrast, AG exerted no effects on the mechanical properties of Winkessel vessels, as well as resistance vessels, in normal controls and STZ-NA of 4 weeks diabetes. We conclude that only rats with STZ-NA of 8 weeks diabetes produce a detrimental effect on the pulsatile nature of blood flows in arteries. Treatment with AG may impart significant protection against aortic stiffening in STZ-NA of 8 weeks diabetic rats possibly through inhibition of the AGEs-accumulation on collagen in the arterial wall. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T08:14:29Z (GMT). No. of bitstreams: 1 ntu-94-R91441003-1.pdf: 561846 bytes, checksum: 9d2b4c62c65b492618c046b69422326c (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 縮寫名詞對照表………………………………………………………vi
中文摘要………………………………………………………………1 英文摘要………………………………………………………………3 緒論……………………………………………………………………5 第二型糖尿病…………………………………………………………7 胰素與內皮細胞的功能………………………………………………8 胰島素阻抗 (insulin resistance)…………………………………9 心血管疾病併發症……………………………………………………10 Advanced glycation end products (進展醣化最終產物) 的形成…12 Adnanced glycation end products (進展醣化最終產物) 對於血行力學的影響……………………………………………………………14 Aminoguanidine (氨基胍)…………………………………………15 動脈物理性質之量化………………………………………………17 主動脈輸入阻抗頻譜的特性及功能………………………………17 實驗動機與目的……………………………………………………20 材料與方法…………………………………………………………23 動物備製……………………………………………………………23 第二型糖尿病動物模式……………………………………………23 實驗動物分組………………………………………………………24 血液中葡萄糖濃度測定……………………………………………25 實驗儀器……………………………………………………………25 實驗流程……………………………………………………………27 資料轉換與分析方法………………………………………………28 左心室比率…………………………………………………………35 結果…………………………………………………………………36 基本資料……………………………………………………………36 基本血行力學………………………………………………………37 脈態下參數…………………………………………………………38 討論…………………………………………………………………40 新鼠糖尿病動物模式對心血管動脈物理特性之影響 基本參數與穩態參數討論…………………………………………43 脈態參數部分………………………………………………………46 Advanced glycations end products的影響……………………49 Aminoguanidine扮演的角色………………………………………52 其他注意事項………………………………………………………54 結論…………………………………………………………………55 表次 Table1. Effects of NIDDM and AG on body weight, left ventricle weight, plasma glucose and insulin level, and aortic pressure in male Wistar-Kyoto rats………………………………………………………..56 圖次 Figure. 1 Aortic input impedance spectra derived from the ascending aortic pressure and flow wave forms..…..………………………………………...57 Figure. 2 Impulse response function curve derived from the filtered aortic input impedance spectra.....…………………….………………………….58 Figure. 3 Effects of STZ-NA and AG on basal heart rate (HR), cardiac output (CO), stroke volume (SV), and total peripheral resistance (Rp)..……………..59 Figure. 4 Effects of STZ-NA and AG on aortic characteristic impedance ( Zc ), systemic arterial compliances at mean aortic pressur (Cm), wave reflction factor , (Rf), and wave transit time (τ) .……………………………………………60 參考文獻………………………………………………………………61 | |
dc.language.iso | zh-TW | |
dc.title | Aminoguanidine對第二型糖尿病之新鼠模式的治療所產生動脈力學之影響 | zh_TW |
dc.title | Effects of long-term treatment of aminoguanidine on the mechanical properties of the arterial system in a new model of streptozotocin-nicotinamide rats | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蘇銘嘉,曾淵如 | |
dc.subject.keyword | 醣化最終產物,胰島素阻,,阻抗頻譜分析, | zh_TW |
dc.subject.keyword | advanced glycation end products,insulin resistance,impedance analysis, | en |
dc.relation.page | 67 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-20 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生理學研究所 | zh_TW |
顯示於系所單位: | 生理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 548.68 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。