請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36753完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張倉榮 | |
| dc.contributor.author | Ting-Shing Hu | en |
| dc.contributor.author | 胡庭訓 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:14:17Z | - |
| dc.date.available | 2006-07-26 | |
| dc.date.copyright | 2005-07-26 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-20 | |
| dc.identifier.citation | 1.Ahmadi, G. and Li, A., 2000, Computer simulation of particle transport and deposition near a small isolated building, J. of Wind Eng. and Ind. Aerodyn, 84: 23-46.
2.Anderson, D.A., Tannehill, J.C. and Pletcher, R.H., 1988, Computational Fluid Mechanics and Heat Transfer, McGraw Hill, N.Y. 3.Chen, W.C., Wang, C.S. and Wei., C.C., 1997. An assessment of source concentrations to ambient aerosols in central Taiwan. J. Air Water Manage. Associ., 47: 501-509. 4.Chang, T.J. and Yen, B.C., 1998. Gravitional fall velocity of sphere in viscous fluid. J. Engrg. Mech., 124(11):1193-1199. 5.Chung, K.C., 1999. Three-dimensional analysis of airflow and contaminant particle transport in a partitioned enclosure. Building and Environment, 34:7-17. 6.Clift, R., Grace, J.R., and Weber, M.E., 1978. Bubbles, Drops, and P articles, Academic Press, N.Y. 7.Dick, E., 1996. Introduction to Finite Volume Techniques in Computational Fluid Dynamics, Chap. 11. McGraw Hill, N.Y. 8.Dimitropoulos, C.D., Edwards, B.J., Chae, K.S., and Beris, A.N., 1998. Efficient pseudospectial flow simulations in moderately complex geometries, J. Comp. Phys., 144(2):517-547. 9.Ferziger, J.H. and Peric, M., 2002. Computational Methods for Fluid Dynamics, 3rd Edition, Spring, Berlin. 10.Hinds, W.C., 1999. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. John Wiley & Sons, N.Y. 11.Hussaini, M.Y. and Zan, T.A., 1987. Spectral methods in fluid dynamics, Annual Review of Fluid Mechanics, 19: 339-367. 12.Jiang, Y. and Chen, Q., 2001. Study of natural ventilation in buildings by large eddy simulation. J. of Wind Eng. and Ind. Aerodyn., 89: 1155-1178. 13.Launder, B.E. and Sharma, B.I., 1974. Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc, Letter in Heat and Mass Transfer, 1(2):131-138. 14.Lee, H. and Awbi, H.B., 2004. Effect of internal partitioning on indoor air quality of rooms with missing ventilation-basic study. Building and Environment, 39:127-141. 15.Li, A. and Ahmadi, G., 1992. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow, Aerosol. Sci. and Tech., 16: 209-226. 16.Lu, S.Y., 1996. Narrowest particle size distributions in aerosol processes, J. Chin. Inst. Chem. Eng, 27:71-78 17.Lu, W., Howarth, A.T., Adam, N., and Riffat, S.B., 1996. Modeling and measurement of airflow and aerosol particle distribution in a ventilated two-zone chamber. Building and Environment, 31(5): 417-423. 18.Pope, C.A., and Dockery, D.W., 1992. Acute health effects of PM10 pollution on symptomatic and asymptomatic children. Am. Rev. Respir. Dis., 145(5):1123-1128. 19.Rao, S.S., 2002. Applied Numerical Methods for Engineers and Scientists. Prentice Hall, New Jersey. 20.Schwartz, J., 1993. Particulate air pollution and chronic respiratory disease. Environ. Res., 62: 7-13. 21.Seaton, A., Macnee, W., Donaldson, K. and Godden., D., 1995. Particulate air pollution and acute health effects. Lancet, 345(8943): 176-178. 22.Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. and Speziale, C.G.,1992. Development of Turbulence Models for Shear Flow by a Double Expansion Technique. Physics Fluids, Part A, 4(7):1510-1520. 23.Yang, H.H., Chiang, C.F., Lee, W.J., Hwang, K.P., and Wu, E.M.Y., 1999. Size distribution and dry deposition of road dust PAHs. Environ. Int., 25(5): 585-597. 24.Zhao, B., Zhang, Y., Li, X., Yang, X., and Huang, D., 2004. Comparison of indoor aerosol particle concentration and deposition in different ventilated rooms by numerical method. Building and Environment, 39: 1-8. 25.朱佳仁,2002。「環境流體力學」,科技圖書。 26.吳毓庭,2003,「紊流大渦模擬在二維與三維設施環境問題之研究」,國立台灣大學生物環境系統工程學研究所碩士論文。 27.林亭儀,2003,「環境氣懸微粒在人體呼吸系統沉積之數值模擬」,國立台灣大學生物環境系統工程學研究所碩士論文。 28.謝怡芳,2004,「三維度紊流大渦模擬在多區間建築物室內環境風場之應用研究」,國立台灣大學生物環境系統工程學研究所碩士論文。 29.高宏名,2004「以三維度微粒軌跡追蹤模式研析多區間建築物室內懸浮微粒傳輸行為」,國立台灣大學生物環境系統工程學研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36753 | - |
| dc.description.abstract | 本研究之主要目的是以拉格蘭日(Lagrangian)觀點的氣懸微粒軌跡追蹤模式,來模擬多區間建築物室內氣懸微粒傳輸之力學機制。室內環境風場模擬模式係以尤拉(Eulerian)觀點進行風場之境況模擬,使用k-ε紊流模式以計算紊流場。微粒軌跡追蹤模式在計算微粒受力之時,除了傳統採用的阻力與重力外,又增加考慮Saffman昇力與布朗運動作用力對於微粒的影響。本研究首先分析微粒釋放數對質量濃度與粒數濃度計算之影響。模式模擬結果並透過與前人試驗數據的比對,發現在質量濃度的模擬方面準確性相當高。最後模式釋放足夠的微粒數來模擬微粒的傳輸機制。
本研究繼而探討不同粒徑下微粒傳輸的力學機制,將微粒氣動直徑大小依序分為10μm、5μm、2.5μm、1μm、0.5μm、0.1μm、0.05μm等七組。每種粒徑探討阻力、重力、Saffman昇力、布朗運動作用力對微粒傳輸行為的影響。在比較以上各種不同的受力狀況後,隨著微粒粒徑的減小,阻力對其微粒軌跡的影響也依序變小;當微粒粒徑達到0.1μm時,阻力的影響已趨近於零。而昇力的重要性在微粒粒徑介於5μm和2.5μm之間時對微粒軌跡比較明顯,且在微粒粒徑5μm時,昇力的重要性達到最大。在微粒粒徑大於1μm時,布朗運動對微粒軌跡是毫無影響的,而當微粒粒徑小於0.5μm時,布朗運動的考慮與否對微粒傳輸軌跡則會相當的重要。 | zh_TW |
| dc.description.abstract | The main purpose of this research is to investigate the mechanism of airborne particulate matter transport in ventilated multi-room environment from a Lagrangian particle trajectory tracking technique. The flow field is simulated by using the k-ε turbulence model. We not only add the drag force and the gravitational force into the Lagrangian particle tracking model, but also consider the Brownian motion effect and Saffman lift force. Our study first analyzes how the numbers of particle released affect the mass and count concentrations. The numerical model is next verified by the reliable experimental measurement of Lu et al. (1996). The particle mass concentration are in good agreement with the experimental data.
Our study includes six scenarios for the particle diameters of 10μm, 5μm, 2.5μm, 1μm, 0.5μm, 0.1μm and 0.05μm to investigate the transport mechanism of airborne particulate matter. For each particle diameter, we apply the drag force, gravitational force, Brownian motion and Saffman lift force in simulating airborne particle transport. The numerical results show that the smaller particle diameter is, the little influence of the drag force is. When particle diameter reaches 0.1μm, the influence of the drag force approach to zero. The Saffman lift force is significantly important to particle trajectory for the particle diameter ranging from 5μm to 2.5μm, and the Saffman lift force is the most important mechanism to the particle diameter of 5μm. Furthermore, the Brownian motion has no effect on particle trajectory for the particle diameter greater than 1μm. And the particle trajectory simulation must take account of the Brownian motion effect for the particle diameter smaller than 0.5μm. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:14:17Z (GMT). No. of bitstreams: 1 ntu-94-R92622035-1.pdf: 809371 bytes, checksum: 069447dbac809d46bc3298c7873767c4 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 謝誌 I
摘要 II Abstract IV 目錄 VI 表目錄 VIII 圖目錄 IX 第一章、緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 第二章、物理模式和數值方法 6 2.1 三維度多區間建築物室內環境風場模式 6 2.1.1 環境風場基本控制方程式 6 2.1.2 k-ε紊流模式 8 2.1.3 溫度場基本控制方程式 10 2.2 三維度微粒軌跡追蹤模式 11 2.2.1 三維度Lagrangian微粒軌跡控制方程式 12 2.2.2 基本假設 15 2.2.3 微粒運動之邊界條件 15 2.3 數值方法 16 2.3.1 連續相數值方法 17 2.3.2 分散相數值方法 18 第三章、模式驗證 22 3.1 多區間非等溫環境風場模式驗證 22 3.2 三維度Lagrangian微粒軌跡追蹤模式驗證 23 第四章、模式應用之數值研究 36 4.1 三維度多區間建築物之流場 36 4.2 三維度多區間建築物之微粒 37 4.2.1 微粒濃度之計算 37 4.2.2 微粒軌跡之計算 38 第五章、結果與討論 42 5.1 三維微粒之軌跡 42 5.2 微粒在不同受力狀況下其懸浮百分比之誤差 43 5.3 微粒在不同受力狀況下其懸浮微粒軌跡之比較 45 第六章、結論與建議 65 6.1 結論 65 6.2 建議 66 參考文獻 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | k-ε紊流模式 | zh_TW |
| dc.subject | 計算流體力學 | zh_TW |
| dc.subject | 氣懸微粒軌跡追蹤模式 | zh_TW |
| dc.subject | k-ε turbulence model | en |
| dc.subject | Lagrangian particle trajectory tracking technique | en |
| dc.subject | computational fluid dynamic | en |
| dc.subject | mechanisms of airborne particulate | en |
| dc.title | 多區間建築物室內懸浮微粒傳輸機制之數值研究 | zh_TW |
| dc.title | Transport Mechanism of Airborne Particulate Matter Transport in Ventilated Multi-room Environment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃美玉,朱佳仁,吳中興 | |
| dc.subject.keyword | 計算流體力學,氣懸微粒軌跡追蹤模式,k-ε紊流模式, | zh_TW |
| dc.subject.keyword | computational fluid dynamic,Lagrangian particle trajectory tracking technique,k-ε turbulence model,mechanisms of airborne particulate, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 790.4 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
