請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36745完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文方 | |
| dc.contributor.author | Yu-Yu Lin | en |
| dc.contributor.author | 林有玉 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:13:52Z | - |
| dc.date.available | 2006-07-29 | |
| dc.date.copyright | 2005-07-29 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-20 | |
| dc.identifier.citation | [1] J. A. Collins, Failure of Materials in Mechanical Design-Analysis, Prediction, and Prevention, 1884.
[2] Q. Guo, E. C. Cutiongco, L. M. Keer, and M. E. Fine, “Thermomechanical Fatigue Life Prediction of 63Sn/37Pb Solder,” Journal of Electronic Packaging, Transactions of the ASME, Vol. 114, pp. 145-151, 1992. [3] C. P. Yeh, W. X. Zhou, and K.Wyatt, “Parametric Finite Element Analysis of Flip Chip Reliability,” The International Society for Hybrid Microelectronics, Vol. 19, No. 2, pp. 120-127, 1996. [4] E. Madenci, S. Shkarayev, and R. Mahajan, “Potential Failure Sites in a Flip-Chip Package with and without Underfill,” Journal of Electronic Packaging, Transactions of the ASME, Vol. 120, pp. 336-341, 1998. [5] K. Goh and T. Joo, “Parametric Finite Element Analysis of Solder Joint Reliability of Flip Chip on Board,” Proceedings of IEEE/CPMT Electronics Packaging Technology Conference, pp. 57-62, 1998. [6] K. H. Teo, “Reliability Assessment of Flip Chip on Board Connection,” Proceedings of IEEE/CPMT Electronics Packaging Technology Conference, pp. 269-273, 1998. [7] J. H. Pang, T. I. Tan, and S. K. Sitaraman, “Thermo-mechanical Analysis of Solder Joint Fatigue in a Flip Chip on Board Package Subjected to Temperature Cycling Loading,” Proceedings of Electronics Components and Technology Conference, pp. 878-883, 1998. [8] K. Darbha, J. H. Okura, S. Shetty, and A. Dasgupta, “Thermomechanical Durability Analysis of Flip Chip Solder Interconnects: Part 1-Without Underfill,” Journal of Electronic Packaging, Transactions of the ASME, Vol. 121, pp. 231-236, 1999. [9] K. Darbha, J. H. Okura, S.Shetty, and A. Dasgupta, “Thermomechanical Durability Analysis of Flip Chip Solder Interconnects: Part 2-With Underfill,” Journal of Electronic Packaging, Transactions of the ASME, Vol. 121, pp. 237-241, 1999. [10] 朱文豪,不同型態凸塊佈局對覆晶構裝平面度、熱傳及熱疲勞壽命之影響,國立臺灣大學機械工程研究所碩士論文,2001。 [11] 陳守龍,晶片強度暨覆晶構裝結構模擬與分析,國立台灣大學應用力學研究所碩士論文,2001。 [12] 葉裕德,溫度循環作用下黏塑性錫球結構與負載形式對MLBGA構裝可靠度分析之探討,國立成功大學工程科學研究所碩士論文,2001。 [13] 陳重任,覆晶底填封膠製程參數優化研究,華梵大學工業管理所,2004。 [14] 鍾文仁,覆晶構裝受熱循環負載作用之疲勞壽命分析與探討,中原學報,33卷,pp. 305-315,2004。 [15] O. H. Basquin, “The Exponential Law of Endurance Tests,” Am. Soc. Test. Mater. Proc., Vol. 10, pp. 625-630, 1910. [16] L. F. Coffin, Jr., “A Study of the Effects of Cyclic Thermal Stress on a Ductile Metal,” Trans. ASME, Vol. 76, pp. 931-950, 1954. [17] S. S. Manson, “Behavior of Materials under Conditions of Thermal Stress,” Heat Transfer Symposium, University of Michigan Engineering Research Institute, pp. 9-57, 1953. [18] H. D. Solomon, “Low-Cycle Fatigue of 60Sn/40Pb Solder,” ASTM Special Technical Publication, Philadelphia, Pa, USA, pp. 342-370, 1985. [19] E. C. Cutiongco, S. Vaynman, M.E. Fine, and D.A. Jeannotte, “Isothermal Fatigue of 63Sn-37Pb Solder,” Journal of Electronic Packaging, Vol. 112, pp. 110-114, 1990. [20] W. Engelmaier, “Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. CHMT-6, No. 3, pp. 52-57, 1983. [21] H. D. Solomon, “Fatigue of 60/40 Solder,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. CHMT-9, No. 4, pp. 423-431, 1986. [22] J. P. Clech, “BGA, Flip-Chip and CSP Solder Joint Reliability: of the Importance of Model Validation,” InterPack, pp. 112-121, 1999. [23] 陳紹興,工程機率與統計,超級科技圖書公司,1991。 [24] C. E. Ebeling, An Introduction to Reliability and Maintainability Engineering, McGraw-Hill, 1997. [25] 王新榮,陳時錦,劉亞中,有限元素法及其應用,中央圖書出版社,1997。 [26] 龔皇光,黃柏文,陳鴻雄,ANSYS與電腦輔助工程分析,全華科技圖書,2004。 [27] 康淵,陳信吉,ANSYS入門,全華科技圖書,2002。 [28] 陳宏岳,參數變異對於覆晶構裝熱應力與疲勞壽命之影響,國立台灣大學機械工程研究所碩士論文,2001。 [29] D. E. Riemer, “Prediction of Temperature Cycling Life for SMT Solder Joints on TCE-Mismatched Substrates,” 40th Electronic Components and Technology Conference, pp. 418-425, Vol. 1, Las Vegas, U.S.A. 1990. [30] 陳建和,TF-BGA錫球接點熱應力和損壞機制之研究,國立成功大學工程科學研究所碩士論文,2002。 [31] V. Sarihan, “Temperature Dependent Viscoplastic Simulation of Controlled Collapse Solder Joint Under Thermal Cycling,” Journal of Electronic Packaging, Transactions of the ASME, Vol. 115, pp. 16-21, March 1993. [32] 吳恩柏,「電子構裝概論」課程講義,國立台灣大學應用力學研究所,2004。 [33] J. A. Collins, Failure of Materials in Mechanical Design, Wiley, 1981. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36745 | - |
| dc.description.abstract | 在以往電子構裝相關研究之文獻中,分析一構裝件受力後之應力、應變或壽命經常為一定值,然而實驗或實測所得的結果卻往往具有相當的離散性,本研究為了探討這樣一個隨機疲勞壽命分配從何而來的問題,就以下兩種狀況探討之,一為構裝體之外型尺寸因加工誤差而具變異性,另一為modified Coffin-Manson equation1並非一完全確定之疲勞壽命預估模型。研究的方法為在適當隨機考量下,利用有限元素軟體模擬覆晶構裝體受溫度循環負載,負載後得其最大等效塑性應變再經由modified Coffin-Manson equation求其疲勞壽命。研究之成果顯示:錫鉛凸塊半徑變異較晶片厚度變異更易影響覆晶構裝體之疲勞壽命變異現象,而在modified Coffin-Manson equation並非為一完全確定之疲勞壽命預估模型假設下,構裝體因預估模型變異而產生之隨機疲勞壽命分配現象已不可忽略,而藉由此壽命分配,我們可進一步評估構裝體之量化可靠度及可靠度隨使用時間之退化情形 | zh_TW |
| dc.description.abstract | In study the reliability of electronic packages from mechanics point of view, the analytical result of stress and strain obtained from finite element analysis and fatigue life prediction based on a certain rule are all constant values. However, the real outcomes of package life obtained in laboratories appear to have probability distributions and are frequently plotted in Weibull probability papers. To investigate possible causes of this contradiction, analytical work is performed in the present study. The work includes, first, a finite element analysis based on the assumption that certain geometric parameters are random variables. The maximum strain of a certain type of flip-chip package subjected to thermal-cyclic loading is found, and the fatigue life of the package is determined base on a modified Coffin-Manson equation. Both quantities are random variables owing to the randomness of the geometric parameters. It is found that, among different geometric parameters, the size of the solder bump affects the fatigue life of the package the most. It may cause the fatigue life to have a coefficient of variation (c.o.v.) of 10.65% under the assumption that the solder diameter is a random variable between 0.27 mm and 0.33 mm. In the second phase of the present study, the modified Coffin-Manson equation is considered to have a certain random nature. This can be achieved by assuming certain parameters in the equation are random variables. Through mathematical derivation, it is shown that the predicted fatigue lives may have different mean values and different variations, and the difference may be tremendous under certain assumptions. It is concluded that both random geometric configuration and random life prediction rule may cause the fatigue life of the package to have distribution following certain probability density functions as those obtained from experiments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:13:52Z (GMT). No. of bitstreams: 1 ntu-94-R92522536-1.pdf: 949654 bytes, checksum: cf54e1db4d0def05dde94e01cb04cdaa (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ 目錄……………………………………………………………………Ⅲ 表目錄…………………………………………………………………Ⅵ 圖目錄…………………………………………………………………Ⅶ 第一章 緒論 1-1 研究動機與目的…………………………………………………1 1-2 文獻回顧…………………………………………………………1 1-3 研究流程…………………………………………………………4 1-4 論文架構…………………………………………………………4 第二章 理論簡介 2-1 錫鉛凸塊之疲勞壽命模型………………………………………7 2-2 隨機抽樣…………………………………………………………9 2-3 連續機率分配……………………………………………………12 2-3-1 常態機率分配…………………………………………………14 2-3-2 對數常態機率分配……………………………………………15 2-3-3 韋伯機率分配…………………………………………………17 2-4 機率點圖與卡方測試……………………………………………18 2-4-1 機率點圖…………………………………………………18 2-4-2 卡方測試…………………………………………………20 第三章 有限元素數值分析 3-1 前言………………………………………………………………23 3-2 模型基本假設……………………………………………………26 3-3 模型結構尺寸與材料性質………………………………………27 3-4 施力與邊界條件…………………………………………………28 第四章 幾何參數變異對覆晶構裝熱疲勞壽命之影響 4-1 前言………………………………………………………………34 4-2 晶片厚度變異之影響……………………………………………35 4-3 錫鉛凸塊半徑變異之影響………………………………………38 4-4 小結………………………………………………………………41 第五章 疲勞壽命模型變異對覆晶構裝熱疲勞壽命之影響 5-1 前言………………………………………………………………52 5-2 隨機變數A對疲勞壽命之影響…………………………………53 5-3 隨機變數B對疲勞壽命之影響…………………………………56 5-4 隨機變數A & B對疲勞壽命之影響……………………………57 5-5 小結………………………………………………………………59 第六章 結論與未來展望 6-1 綜合討論…………………………………………………………67 6-2 結論………..……………………………………………………69 6-3 未來展望…………………………………………………………71 參考文獻………………………………………………………………75 附錄A A-1 收斂性分析………………………………………………………79 A-2 網格切割…………………………………………………………79 A-3 有限元素分析結果………………………………………………80 | |
| dc.language.iso | zh-TW | |
| dc.subject | 可靠度 | zh_TW |
| dc.subject | 覆晶構裝體 | zh_TW |
| dc.subject | 隨機疲勞壽命分配 | zh_TW |
| dc.subject | reliability | en |
| dc.subject | flip-chip package | en |
| dc.subject | probability distribution | en |
| dc.title | 電子構裝之力學分析與量化可靠度評估 | zh_TW |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 楊宏智 | |
| dc.contributor.oralexamcommittee | 劉佩玲,蔡明義 | |
| dc.subject.keyword | 覆晶構裝體,可靠度,隨機疲勞壽命分配, | zh_TW |
| dc.subject.keyword | flip-chip package,reliability,probability distribution, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 927.4 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
