請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36731完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 嚴震東 | |
| dc.contributor.author | Wei-Fan Chen | en |
| dc.contributor.author | 陳韋凡 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:13:12Z | - |
| dc.date.available | 2005-07-22 | |
| dc.date.copyright | 2005-07-22 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-20 | |
| dc.identifier.citation | Reference
Austin V. C., A. M. Blamire, K. A. Allers, T. Sharp, P. Styles, P. M. Matthews and N. R. Sibson (2005) Confounding effects of anesthesia on functional activation in redent brain﹕a study of halothane and α-chloralose anesthesia. Neuroimage. (24)﹕92-100. Bock, C., H. Krep, G. Brinker and M. Hoehn-Berlage (1998) Brainmapping of α-chloralose anesthetized rats with T2*-weighted imaging﹕distinction between the representation of the forepaw and hindpaw in the somatosensory cortex. NMR Biomed. (11)﹕115-119. Bonvento, G., R. Charbonné, J. L. Corrèze, J. Borredon, J. Seylaz and P. Lacombe (1994) Is α-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research? Brain Res. (665)﹕213-221. Burke, M., W. Schwindt, U. Ludwig, J. Hennig and M. Hoehn (2000) Facilitation of electric forepaw stimulation-induced somatosensory activation in rats by additional acoustic stimulation﹕an fMRI investigation. Magn. Reson. Med. (44)﹕317-321. Chang, C., and B. C. Shyu (2001) A fMRI study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats. Brain Res. (897)﹕71-81. Cohen, S. R., A. S. Kimes and E. D. London (1991) Morphine decreases cerebral glucose utilization in limbic and forebrain regions while pain has no effect. Neuropharmacology. (30)﹕125-134. Dijkhuizen, R. M., J. M. Ren, J. B. Mandeville, O. Wu, F. M. Ozdag, M. A. Moskowitz, B. R. Rosen and S. P. Finklestein (2001) Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc. Natl. Acad. Sci. U.S.A. (98)﹕12766-12771. Duong, T. Q., A. C. Silva, S. P. Lee and S. G. Kim (2000) Functional MRI of calcium-dependent synaptic activity﹕cross correlation with CBF and BOLD measurements. Magn. Reson. Med. (43)﹕383-392. Green, C. J. (1982) Animal Anesthesia. London:Laboratory Animal, 81. Hajnal, J. V., R. Myers, A. Oatridge, J. E. Schwieso, I. R. Young and G. M. Bydder (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn. Reson. Med. (31)﹕283-291. Heeger, D. J. and D. Ress (2002) What dose fMRI tell us about neuronal activity?Nat. Rev. Neurosci. (3)﹕142-151. Hill, R. G. and C. M. Pepper (1978) Selective effects of morphine on the nociceptive responses of thalamic neurons in the rat. Br. J. Pharmac. (64)﹕137-143. Houston, G. C., N. G. Papadakis, T. A. Carpenter, L. D. Hall, B. Mukherjee, M. F. James and C. L. H. Huang (2001) Mapping of brain activation in response to pharmacological agents using fMRI in the rat. Magn. Reson. Imaging. (19)﹕905-919. Hsu, E. W., L. W. Hedlund and J. R. MacFall (1998) Functional MRI of the rat somatosensory cortex﹕effects of hyperventilation. Magn. Reson. Med. (40)﹕421-426. Hyder, F., K. L. Behar, M. A. Martin, A. M. Blamire and R. G. Shulman (1994) Dynamic magnetic resonance imaging of the rat brain during forepaw stimulation. J. Cereb. Blood Flow Metab. (14)﹕649-655. Kalisch, R., M. Delfino, M. G. Murer and D. P. Auer (2005) The phenylephrine blood pressure clamp in pharmacologic magnetic resonance imaging: reduction of systemic confounds and improved detectability of drug-induced BOLD signal changes. Psychopharmaco. (Berl). Apr 28; [Epub ahead of print]. Keiholz, S. D., A. C. Silva, M. Raman, H. Merkle, and A. P. Koretsky (2004) Functional MRI of the Rodent somatosensory pathway using multislice echo plannar imaging. Magn. Reson. Med. (52)﹕89-99. Khubchandani, M., H. N. Mallick, N. R. Jagannathan and K. V. Mohan (2003) Stereotaxic assembly and procedures for simultaneous electrophysiological and MRI study of conscious rat. Magn. Reson. Med. (49)﹕962-967. Kida, I., F. Hyder and K. L. Behar (2001) Inhibition of voltage-dependent sodium channels suppresses the functional magnetic resonance imaging response to forepaw somatosensory activation in the rodent. J. Cereb. Blood Flow Metab. (21)﹕585-591. Lahti, K. M., C. F. Ferris, F. Li, C. H. Sotak and J. A. King (1998) Imaging brain activity in conscious animals using functional MRI. J. Neurosci. Methods. (82)﹕75-83. Lees, P. and B. Pharm (1972) Pharmacology and toxicology of alpha chloralose﹕a review. Vet. Rec. (91)﹕330-333. Lindauer, U., A. Villringer and U. Dirnagl (1993) Characterization of CBF response to somatosensory stimulation﹕model and influence of anesthetics. Am. J. Physiol. (264)﹕H1223-H1228. Liu, Z. M., K. F. Schmidt, K. M. Sicard and T. Q. Duong (2004) Imaging oxygen consumption in forepaw somatosensory stimulation in rats under isoflurane anesthesia. Magn. Reson. Med. (52)﹕277-285. Logothetis, N. K., J. Pauls, M. Augath, T. Trinath and A. Oeltermann (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature. (412)﹕150-157. Malisza, K. L. and J. C. Docherty (2001) Capsaicin as a source for painful stimulation in functional MRI. J. Magn. Reson. Imaging. (14)﹕341-347. Malisza, K. L., L. Gregorash, A. Turner, T. Foniok, P. W. Stroman, A. A. Allman, R. Summers and A. Wright (2003) Functional MRI involving painful stimulation of the ankle and the effect of physiotherapy joint mobilization. Magn. Reson. Imaging. (21)﹕489-496. Manning, B. H., M. J. Morgan and K. B. J. Franklin (1994) Morphine analgesia in the formalin test﹕evidence for forebrain and midbrain sites of action. Neuroscience. (63)﹕289-294. Nattel, S., Z. Wang and C. Matthews (1990) Direct electrophysiological actions of pentobarbital at concentrations achieved during general anesthesia. Am. J. Physiol. (259)﹕H1743-H1751. Ogawa, S., T. M. Lee, A. R. Kay and D. W. Tank (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U.S.A. (87)﹕9868-9872. Parker, J. L. and H. R. Adams (1978) The influence of chemical restraining agents on cardiovascular function﹕a review. Lab. Anim. Sci. (28)﹕575-583. Pelled, G., H. Bergman and G. Goelman (2002) Bilateral overactivation of the sensorimotor cortex in the unilateral rodent model of Parkinson’s disease – a functional magnetic resonance imaging study. Eur. J. Neurosci. (15)﹕389-394. Pitha, J., J. Milecki, H. Fales, L. Pannell and K. Uekama (1986) Hydroxypropyl-β-cyclodextrin﹕preparation and characterization effects in solubility of drugs. Int. J. Pharm. (29)﹕73-82. Preece, M., B. Mukherjee, C. L. H. Huang, L. D. Hall, R. A. Leslie and M. F. James (2001) Detection of pharmacologically mediated changes in cerebral activity by functional magnetic resonance imaging﹕the effects of sulpiride in the brain of the anaesthetised rat. Brain Res. (916)﹕107-114. Peeters, R. R., I. Tindemans, E. De Schutter and A. Van der Linden (2001) Comparing BOLD fMRI signal changes in the awake and anesthetized rat during electrical forepaw stimulation. Magn. Reson. Imaging. (19)﹕821-826. Sachdev, R. N. S., G. C. Champney, H. Lee, R. R. Price, D. R. Pickens Ⅲ, V. L. Morgan, J. D. Stefansic, P. Melzer and F. F. Ebner (2003) Experimental model for functional magnetic resonance imaging of somatic sensory cortex in the unanesthetized rat. Neuroimage. (19)﹕742-750. Silva, A. C. and A. P. Koretsky (2002) Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proc. Natl. Acad. Sci. U.S.A. (99)﹕15182-15187. Silverman, J. and W. W. Muir, Ⅲ (1993) A review of laboratory animal anesthesia with chloral hydrate and chloralose. Lab. Anim. Sci. (43)﹕210-216. Smith, A. J., H. Blumenfeld, K. L. Behar, D. L. Rothman, R. G. Shulman and F. Hyder (2002) Cerebral energetics and spiking frequency﹕the neurophysiological basis of fMRI. Proc. Natl. Acad. Sci. U.S.A. (99)﹕10765-10770. Spenger, C., A. Josephson, T. Klason, M. Hoehn, W. Schwindt, M. Ingvar and L. Olson (2000) Functional MRI at 4.7 Tesla of the rat brain during electric stimulation of forepaw, hindpaw, or tail in single- and multislice experiments. Exp. Neurol. (166)﹕246-253. Storer, R. J., P. Bulter, K. L. Hoskin and P. J. Goadsby (1997) A simple method, using 2-hydroxypropyl-β-cyclodextrin, of administering α-chloralose at room temperature. J. Neurosci. Methods. (77)﹕49-53. Tuor, U. I., K. Malisza, T. Fonjok, R. Papadimitropoulos, M. Jarmasz, R. Somorjai and P. Kozlowski (2000) Functional magnetic resonance imaging in rats subjected to intense electrical and noxious chemical stimulation if the forepaw. Pain. (87)﹕315-324. Tuor, U. I., E. McKenzie, and B. Tomanek (2002) Functional magnetic resonance imaging of tonic pain and vasopressor effects in rats. Magn. Reson. Imaging. (20)﹕707-712. Ueki, M., G. Mies and K. A. Hossmann (1992) Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat. Acta. Anaesthesiol. Scand. (36)﹕318-322. Xi, Z. X., G. Wu, E. A. Stein and S. J. Li (2004) Opiate tolerance by heroin self-administration﹕an fMRI study in rat. Magn. Reson. Med. (52)﹕108-114. Yang, X., F. Hyder and R. G. Shulman (1996) Activation of single whisker barrel in rat brain localized by functional magnetic resonance imaging. Proc. Natl. Acad. Sci. U.S.A. (93)﹕475-478. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36731 | - |
| dc.description.abstract | 在探究大腦活動的時候,功能性磁振造影是一個有用的工具,而在動物的功能性磁振造影實驗中,一個有效且穩定的麻醉是很重要的。本實驗主要是決定使用α-氯醛醣來麻醉動物時,所需的最佳麻醉劑量,另外使用此最佳劑量來探討,嗎啡對於疼痛相關反應的影響。20隻Long-Evans大鼠 (220 ~ 320 克)分為4組,分別給予不同的α-氯醛醣劑量:高劑量 (60 毫克/公斤/小時) 、低劑量 (30 毫克/公斤/小時)或對照組。在5小時的監測時間中,持續觀察動物的血壓、心跳、血液氧氣分壓、血液二氧化碳分壓,並且在後腳掌給予電刺激 (2 mA, 0.5 ms, 0.3 Hz),紀錄刺激所引發的體感覺誘發電位 (EEG) 及屈肌反射 (EMG)等生理參數。在低劑量的α-氯醛醣麻醉下,動物的生理狀態可以維持穩定達5個小時,並且在fMRI的實驗中得到清楚的BOLD反應,但是對照組以及高劑量的老鼠,在這樣長時間的麻醉中,生理及麻醉狀況無法維持穩定。另外在嗎啡的實驗中,與疼痛相關的反應區域都會被嗎啡所抑制,在經過3小時的恢復時間後,體感覺皮質的反應會回復,但是前扣帶迴皮質、運動皮質區及扣帶迴皮質的反應,仍然被抑制。在本實驗中,我們測試並達到了穩定的α-氯醛醣麻醉,而這個方法將可以應用在其他相關的實驗上。 | zh_TW |
| dc.description.abstract | Functional magnetic resonance imaging (fMRI) is an important tool for exploring brain activities. A stable anesthetized animal preparation is critically important for fMRI applications. The present study intended to determine the optimal infusion rate of α-chloralose anesthesia, the most popular anesthetics used in animal fMRI. In addition, the analgesia effect of morphine was tested by giving morphine before electrical stimulation. Long-Evans female rats (220 ~ 320 g) were used. After halothane induction, α-chloralose was given in an intravenous bolus injection (80 mg/kg). Subsequently, 3 different maintenance dosages were compared. These were administrated through intravenous infusion:high (60 mg/kg/hr), low (30 mg/kg/hr) or vehicle. During the 5 hours of recording period, blood pressure, heart rate, O2 and CO2 concentration in arterial blood were monitored. In addition, somatosensory evoked potentials (EEG) and flexor reflex activities (EMG) after hind paw electrical stimulation (2 mA, 0.5 ms, 0.3 Hz) were recorded every half hour. Under suitable infusion rate (30 mg/kg/hr), the physiological conditions remained stable for 5 hr, while the results suggested that the high dose and vehicle were not appropriate dosages for a stable anesthesia. Also, fMRI activations of the contralateral primary somatosensory cortex (SI) were readily observed under low dosage of α-chloralose infusion. In the morphine effect study, activations of anterior cingulate cortex (ACC), motor area/cingulate cortex (CC) and SI were attenuated after morphine administration. However, BOLD signals of SI were recovered after 3 hours, while the responses in ACC, motor area/CC remained suppressed. This study demonstrates that a steady α-chloralose anesthesia can be achieved for fMRI study, which can be utilized in the study of drug, lesion or other brain experiments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:13:12Z (GMT). No. of bitstreams: 1 ntu-94-R92b41007-1.pdf: 1350107 bytes, checksum: 17d74373959ca285a8650899491b9697 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Table of Contents
Abstract i 中文摘要 ii Abbreviation v 1. Introduction 1 1.1. fMRI and BOLD 1 1.2. fMRI and animal study 2 1.3. a-chloralose 4 1.4. Morphine 5 1.5. Goals of the study 6 2. Materials and Methods 7 2.1. Subjects 7 2.2. General surgical preparation 7 2.3. Drug administration 7 2.3.1. a-chloralose 7 2.3.2. Morphine 8 2.4. Apparatus 8 2.4.1. Electrical stimulation 8 2.4.2. Recording of physiological parameters 8 2.4.3. Electrophysiological EEG recording 8 2.4.4. Electrophysiological EMG recording 9 2.5. Procedure 9 2.5.1. Experiment Ⅰ︰Effect of a-chloralose dosage on anesthesia depth and cortical evoked activity 9 2.5.2. Experiment Ⅱ︰fMRI responses to forepaw stimulation under a-chloralose anesthesia 10 2.5.3. Experiment Ⅲ︰Effect of morphine on electrical shock induced fMRI activities 11 2.6. Data analysis 12 3. Results 13 3.1. Experiment Ⅰ︰Effect of a-chloralose dosage on anesthesia depth and cortical evoked activity 13 3.2. Experiment Ⅱ︰fMRI responses to forepaw stimulation under a-chloralose anesthesia 15 3.3. Experiment Ⅲ︰Effect of morphine on electrical shock induced fMRI activities 16 4. Discussion 18 4.1. The inadequacy of high dose a-chloralose and vehicle infusion 18 4.2. The usage of low dose a-chloralose infusion 19 4.3. Comparison of the 2 vehicles 19 4.4. The necessity of using constant a-chloralose infusion 20 4.5. Comparison of other a-chloralose anesthesia studies 21 4.6. Possible side effect of nociceptive stimulation on BOLD resposes 22 4.7. Animal fMRI preparation without anesthesia 22 4.8. Nociceptive responses and morphine 23 5. Conclusion 25 Reference 26 Table of figures 32 Figures 33 | |
| dc.language.iso | en | |
| dc.subject | 功能性磁振造影 | zh_TW |
| dc.subject | α-氯醛醣 | zh_TW |
| dc.subject | α-chloralose | en |
| dc.subject | fMRI | en |
| dc.title | α-氯醛醣麻醉劑量對功能性磁振造影相關參數之影響 | zh_TW |
| dc.title | Effect of α-chloralose dosage on anesthesia depth, cortical evoked potential and fMRI in the rat. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳志宏 | |
| dc.contributor.oralexamcommittee | 徐百川,黃基礎,曾文毅 | |
| dc.subject.keyword | 功能性磁振造影,α-氯醛醣, | zh_TW |
| dc.subject.keyword | fMRI,α-chloralose, | en |
| dc.relation.page | 50 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-20 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
