Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36730
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳尊賢
dc.contributor.authorShih-Wen Chenen
dc.contributor.author陳詩文zh_TW
dc.date.accessioned2021-06-13T08:13:09Z-
dc.date.available2005-07-27
dc.date.copyright2005-07-27
dc.date.issued2005
dc.date.submitted2005-07-20
dc.identifier.citation盛呈淵。1996。土壤與肥料三要素。P.20-39。肥料學。正中書局。
蔣先軍,駱永明,趙其國,吳勝春,吳龍華,喬顯亮,宋靜。2000。重金屬污染土壤的植物修復研究Ⅰ.金屬富集植物Brassica juncea 對銅鋅鎘鉛污染的影響。土壤 32:71-74。
蔣先軍,駱永明,趙其國。2001。鎘污染土壤的修復及其EDTA調控研究Ⅰ.鎘對富集植物印度芥菜的毒性。土壤 33:197-201。
環保署。2002。土壤重金屬檢測方法─王水消化法。NIEA S321.62C。中華民國九十二年七月一日環署檢字第0920047102號公告。
賴鴻裕。2004。EDTA對促進受重金屬鎘鉛及鉛污染土壤植生復育之研究。國立台灣大學農業化學研究所博士論文。
Anderson, T.A., E.A. Guthrie, and B.T. Wilson. 1993. Bioremediation in the rhizosphere. Environ. Sci. Technol. 27:2630-2636.
Anderson, T.A., E.L. Kruger., and J.R. Coats. 1994. Enhanced degradation of a mixture of three herbicides in the rhizosphere of herbicide-tolerant plants. Chemosphere 28:1551-1157.
Baker, A.J.M., and R.R. Brooks. 1989. Terrestrial higher plants which accumulate metallic elements—a review of their distribution, ecology, and phytochemistry. Biorecovery 1 :81-126.
Barona, A., I. Aranguiz, and A. Elias. 2001. Metal associations in soils before and after EDTA extractive decontamination: implications for effectiveness of further cleanup procedures. Environ. Pollut. 113:79-85.
Bennett, E.L., J.L. Burkhead, K.L. Hale, N. Terry, M. Pilon, and E.A.H. Pilon-Smits. 2003. Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J. Environ. Qual. 32:432-440.
Berti, W.R., and S.D. Cunningham. 1997. In-place inactivation of Pb in Pb-contaminated soils. Environ. Sci. Technol. 31:1359-1384.
Black, H. 1995. Absorbing possibilities: phytoremediation. Environ. Health Perspec. 103:1106-1108.
Blaylock, M.J., and J.W. Huang. 2000. Phytoextraction of Metals. p. 53. In I. Raskin I, and B. Ensley (eds.). Phytoremediation of Toxic Metals.Wiley, NY, USA.
Blaylock, M.J., D.E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B.D. Ensley, and I. Raskin. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31:860-865.
Bosshard, P.B., B. Reinhard, and H. Brandl. 1996. Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environ. Sci. Technol. 30:3066-3070.
Boyd, R.S., and S.N. Martens. 1992. The raisond’etre for metal hyperaccumulation by plants. p.279-289. In A.J.M. Baker, J. Proctor, R.D. Reeves (eds.). The ecology of ultramafic (serpentine) soils. Intercept, Andover, MA, USA.
Bremner, J.M. 1970. Regular Kjeldahl Method. p.610-616. In A.L. Page (ed.). Method of soil analysis. Part 2. Chemical and microbiological properties. Academic Press, NY, USA.
Brooks, R.R. 1998. Plants that hyperaccumulate heavy metals–Their role in phytoremediation, microbiology, archaeology, mineral exploration, and phytomining. CAB International. New York, USA.
Brooks, R.R., R.R. Morrison, R.S. Reeves, and F. Malaisse. 1978. Copper and cobalt in African species of Aeolanthus Mart (Plectranthinae, Labiatae). Plant and Soil 50 :503-597.
Burken, J.G., and J.L. Schnoor. 1996. Phytoremediation: Plant uptake of atrazine and role of root exudates. J. Environ. Engineering 122:958-963.
CCME . 1997. Recommended canadian soil quality guidelines. CCME Document
#PN1268. Canadian council of ministers of the environment.Winnipeg, Manitoba, Canada.
Centre. Proceedings of the HSRC/WERC Joint Conference on the Environment. Albuquerque, NM, USA.
Chambers, C., and M. Winfield. 2000. Mining’s many faces, Canadian institute for environmental law and policy. Toronto, Ontario, Canada.
Chen, Y.X., Q. Lin, Y.M. Luo, Y.F. He, S.J. Zhen, Y.L. Yu, G.M. Tian, and M.H. Wong. 2003. The role of citric acid on phytoremediation of heavy metal contaminated soil. Chemosphere 50:807-811.
Coghlan, A. 1996. Fickle greens undermine consumer power. New Scientist 17:17-27.
Cunningham, S.D., W. Berti, and J.W. Huang.1995. Remediation of contaminated soils and sludges by green plants. p.33. In A. Leeson, B.C. Alleman (eds.). Phytoremediation Proceedings of the 3rd International Conference on In Situ and On-Site Bioremediation. San Diego, CA, USA.
Dushenkov, V., P.B.A.N. Kumar, H. Motto, and I. Raskin. 1995. Rhizofiltration: The use of plant to remove heavy metals from aqueous stream. Environ. Sci. Technol. 29:1239-1245.
Dushenkov, V., N.P. Kumar, H. Motto, and I. Raskin. 1995. Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environ. Sci. Technol. 29:1239-1245.
Ebbs, S.D., M.M. Lasat, D.J. Brady, J. Cornish, R. Gordon, and L.V. Kochian. 1997. Phytoextraction of cadmium and zinc from a contaminated soil. J. Environ. Qual. 26:1424-1430
Ernst, W.H.O. 1998. The origin and ecology of contaminated, tabilized and non-pristine soils. p. 17e29. In J. Vangronsveld and S.D. Cunningham (eds.). Metal-contaminated soils: In situ inactivation and phytorestoration. Springer, Berlin Heidelbeg, NY, USA.
Evangelou, M.W.H., H. Daghan, and A. Schaeffer. 2004. The influence of humic acids on phytoextraction of cadmium from soil. Chemosphere 57:207-213.
Fiorenza, S., C.L. Oubre, and H. Ward. 2000. Phytoremediation of hydrocarbon contaminated soil. Lewis Publishers, NY, USA.
Gardea-Torresdey, J.L., J. Bibb, K.J. Tiemann, J.H. Gonzalez, and J. Arenas. 1996. Adsorption of copper ions from solution by heavy metal stressed Larrea tridentata (Creosote bush) biomass. Great Plains Rocky Mountain Hazardous Substances Research.
Gardner, W.H. 1986. Water content. p. 493-544. In A. Klute et al. (eds.). Methods of soil analysis. Part 1. Physical and mineralogical method. Second edition. Madison, WI, USA, Agronomy Monograph 9.
Gatehouse, S., D.W. Russell, and J.C. Van Moort. 1976. Sequential soil analysis in exploration geochemistry. J. Geochem. Explor. 8:483-494.
Gee, G..W., and J.W. Bauder. 1986. Partical-size analysis. p.383-412. In A. Klute et al. (eds.). Methods of soil analysis. Part 1. Physical and mineralogical method. Second edition. Madison, WI, USA, Agronomy Monograph 9.
Glass, D. 2000. The 2000 United States Market for Phytoremediation. D. Glass and Associates. Needham, MA, USA.
Glass, D. 1998. The 1998 United States Market for Phytoremediation. D. Glass and Associates, Inc., Needham, MA, USA
Goldberg, S.P., and K.A. Smith. 1984. Soil manganese: E values, distribution of manganese-54 among soil fractions, and effects of drying. Soil Sci. Sci. Am. J. 48:559-564.
Gupta, S.K., and K. Y. Chen. 1975. Partitioning of trace metals in selective chemical fractions of near shore sediments. Environ. Lett. 10:129-158.
Guo, Y., and H. Marschner. 1995. Uptake, distribution, and binding of candium and nickel in different plant species. J. Plant Nutr. 18:2691-2706.
Harrington, C.F., D.J. Roberts, and G. Nickless. 1996. The effect of cadmium, zinc and copper on the growth, tolerance index, metal uptake and production of malic acid in two strains of the grass Festuca rubra. Can. J. Botany. 74:1742-1752.
Harmon, M.E., and K. Lajtha. 1999. Analysis of detritus and organic horizon for mineral and organic constitutes. p.143-165. In G.P. Robertson, D.C. Coleman, C.S. Bledsoe, and P. Sollins (eds.). Standard soil methods for long-term ecological research. Oxford University Press, Inc., NY, USA.
Helmke, P.A., and D.L. Sparks. 1996. Lithium, Sodium, Potassium, Rubidum, and Cesium. p.551-574. In J. M. Bartels (ed.).Methods of soil analysis, Part 3. Chemical methods. Soil Science Society of America (SSSA). Book Series No. 5. 3rd edition. Aronomy Monograph No. 9. ASA and SSSA, Madison, WI, USA.
Henry, J.R. 2000. An overview of the phytoremediation of lead and mercury. United States Environmental Protection Agency Office of Solid Waste and Emergency Response, Washington, DC, USA.
Huang, J.W.W., J.J. Chen, W.R. Berti, and S.D. Cunningham. 1997. Phytoremediation of lead contaminated soils: role of synthetic chelates in lead phytoextraction. Nat. Biotechnol. 20:1140-1145.
Huang, J.W.W., M.J. Blaylock, Y. Kapulink, and B.D. Ensley. 1998. Phytoremediation of uranium contaminated soils: role of organic acids in trigging uranium hyperaccumulation in plants. Environ. Sci. Technol. 32:2004-2008.
Jones. K.C., P.J. Peterson, and B.E. Davies. 1984. Extraction of silver from soils and its determination by atomic absorption spectrometry. Geoderma 33:157-168.
Kayser, A., K. Wenger, A. Keller, W. Attinger, H.R. Felix, S.K. Gupta, and R. Schulin. 2000. Enhancement of phytoextration of Zn, Cd, and Cu from calcareous soil : The use of NTA and sulfur amendments. Environ. Sci. Technol. 34:1778-1783.
Kos, B., and Domen L. 2003. Induce phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environ. Sci. Technol. 37:624-629.
Kim, I.S., K.H. Kang, and P. Johnson-Green. 2003. Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environ. Pollut. 126:235-243
Kabata, P., A.M. Piotrowska, and S. Dudka. 1993. Trace elements in legumes and monocotyledona and their suitability for the assessment of soil contamination. p.485-494. In B. Markert (ed.). Plants as biomonitors: indicators for heavy metal in the terrestrial environment. VCH Verlagsgesellschaft, Weinheim, Germany.
Kumar, P.B.A.N., V. Dushenkov, H. Motto, and I. Raskin. 1995. Phytoextraction: The use of plant to remove heavy metals from aqueous stream. Environ. Sci. Technol. 29:1232-1238.
Kuo, S. 1996. Phosphorus. p.869-919. In J.M. Bartels (ed.). Methods of soil analysis, Part 3. Chemical methods. Soil Science Society of America (SSSA) Book Series No. 5. 3rd edition. ASA and SSSA, Madison, WI, USA.
Lai, H.Y., and Z.S. Chen, 2004. Effect of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 55:421-430.
Lasat, M. 2000. The Use of Plants for the Removal of Toxic Metals from Contaminated Soils, Unpublished Manuscript from the US EPA. American Association for Advancement of Sciences Fellowship Program.
Lindsay, W.L., and W.A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42:421-428.
Lim, J.M., A.L. Salido, and D.J. Butcher. 2004. Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. J. Microc. 76:3-9.
Lombi, E., F.J. Zhao, S.J. Dunham, and S.P. McGrath. 2001. Phytoremediation of heavy metal-contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction. J. Environ. Qual. 30:1919-1926.
Madejon, P., J.M. Murillo, T. Maranon, F. Cabrera, and M.A. Soriano. 2003. Trace element and nutrient accumulation in sunflower plants two years after the Aznalcillar mine spill. Sci. Total Environ. 307: 239-257.
Mathur, S.P., and M.P. Levesque. 1983. The effects of using copper for mitigating histosol subsidence on: 2. the distribution of copper, manganese, zinc, and iron in an organic soil, mineral sublayers, and their mixtures in the context of setting a threshold of phytotoxic soil-copper. Soil Sci. 135:166-176.
McGrath, P.S., and F.J. Zhao. 2003. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion Series 14:277-282.
McIntyre, T.C. 2001. PHYTOREM–A global data base on aquatic and terrestrial plants known to sequester, accumulate, or hyperaccumulate metals in the environment. Environment Canada, Ottawa, Ontario, Canada.
McIntyre, T. 2003. Phytoremediation of heavy metals from soils. Adv. biochem. eng. biotechnol 78:97-123.
McLeam, E.Q. 1982. Soil pH and lime requirement. p.199-224. In A.L. Page (ed.). Method of soil analysis. Part 2. Chemical and microbiological properties. Second edition. Madison, WI, USA, Aronomy Monograph 9.
Mench, M.J., V.L. Didier, M. Loffler, A. Gomez, and P. Masson. 1994. A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadimum and lead. J. Environ. Qual. 23:58-63.
Miller, W.P., D.C. Martens, and L.W. Zelazny. 1986. Effect of sequence in extraction of trace metals from soils. Soil Sci. Soc. Am. J. 50:598-601.
Moffat, A.S. 1995. Plants proving their worth in toxic metal cleanup. Science 269:302-303.
McCutcheon, S. 2000. Phytoremediation State of the Science Conference. Boston, MA, USA.
National Contaminated Sites Working Group. 1998. Unpublished manuscript, federal government working group on contaminated sites. Ottawa, Ontario, Canada.
National Round Table on Environment and Economy. 1998. Brownfields, ministry of
supply and services. Ottawa, Ontario, Canada.
Nelson, D. W., and L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter. p.539-580. In A.L. Page (ed.). Method of soil analysis. Part 2. Chemical and microbiological properties. Second edition. Madison, WI, USA, Aronomy Monograph 9.
Olson, P., and J. Fletcher. 2000. Unpublished manuscript. Environ. Sci. Pollution Res.
Parkpian, P., S.T. Leong, P. Laortanakul, and N.T.K. Phuong. 2002. The benefits and risks of using river sediment for Vietnamese agriculture: a case study of the Nhieu Loc canal in Ho Chi Minh city. J. Environ. Sci. Health A 37:1099-1122.
Pickering, I. J., R.C. Prince, J.M. George, R.D. Smith, G.N. George, and D. E. Salt. 2000a. Reduction and coordination of arsenic in Indian mustard. Plant Physiol. 122: 1171–1177.
Piechalake, A., B. Tomaszewska and D. Baralkiewicz. 2003. Enhancing phytoremediative ability of Pisum Sativum by EDTA application. Phytochemistry 64:1239-1251.
Pollard, J.A., and A.J.M. Baker. 1997. Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). New Phytol. 135:655-662.
Phytotech. 1996. Vanguard and batterymarch in a tabloid-like split. The Wall Street Journal, February 29.
Raskin, I., and B.T. Ensley. 2000. Phytoremediation of toxic metals-Using plants to clean up the environment. Wiley Inter-Science Publication, NY, USA.
Reilley, K.A., M.K. Banks, and A.P. Schwab. 1996. Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J. Environ. Qual. 25:212-219
Rhoades, J.K. 1982. Cation exchange capacity. p.149-158. In A.L. Page (ed.). Method of soil analysis. Part 2. Chemical and microbiological properties. Second edition. Madison, WI, USA, Aronomy Monograph 9.
Rugh, C.L., H.D. Wilde, N.M. Stack, D.M. Thompson, A.O. Summers, and R.B. Meagher. 1996. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc. Nat. Acad. Sci. 93:3182-3187.
Salt, D., M. Blaylock, P.B. Kumar, V. Dushenkov, B.D. Ensley, I. Chet, and L. Raskin. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Bio/technology 13 :468-474.
Sas-Nowosielska, A., R. Kucharskia, E. Małkowski, M. Pogrzeba, J.M. Kuperberg, and K. Kryńskia. 2004. Phytoextraction crop disposal—an unsolved problem. Environ. Pollut. 128:373-379.
Saxena, P. 2001. Unpublished manuscript on the establishment of a network of centres of excellence on phytoremediation in Canada. University of Guelph, Ontario,Canada.
Schnoor, J., L.A. Licht, S.C. McCutcheon, N.L. Wolfe, and L.H. Carreira. 1995. Phytoremediation of organic and nutrient contaminants. Environ. Sci. Technol. 29:318A-323A.
Schwab, A.P., M.K. Banks, and M. Arunachalam. 1995. Biodegradation of polycyclic aromatic hydrocarbons in rhizosphere soil. p.131-136. In R.E. Hinchee, D.B. Anderson and R.E. Hoeppel (eds.). Bioremediation of recalcitrant organics. Battelle Press, Columbus, OH, USA.
Schmidt, U. 2003. Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J. Environ. Qual. 32:1939-1945
Shaw, A.J (ed.). 1990. Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRC Press, Boca Raton, FL, USA.
Shen, Z.G., X.D. Li, C.C. Wang, H.M. Chen, and H. Chua. 2002. Lead phytoextraction from contaminated soil with high-biomass plant species. J. Environ. Qual. 31: 1893-1900.
Soil Survey Staff, 1999. Key to Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys. USDA, U.S. Gov. Print. Office, Agric. Handbook No.436.
Sorenson, D.L., R.C. Sims, and X. Qiu. 1994. Field scale evaluation of grass enhanced bioremediation of PAH contaminated soils. 20th Annual RREL Research Symposium Abstract Proceedings. EPA Document #EPA/600/R-94/011. U.S. Environmental Protection Agency. Washington, DC, USA.
Susarla, S., V.F. Medina, and S.C. McCutecheon. 2002. Phytoremediation: An ecological solution to organic chemical contaminated. Ecology. Engineering 18:647-658. Handbook No.436.
US Department of Energy. 1994. Summary report of a workshop on phytoremediation research needs. Office of Technical Information. Springfield, VA, USA.
US EPA . 1997. Technology alternatives for the remediation of soils contaminated with As, Cd, Cr, Hg, and Pb. EPA Document #EPA/540/S-97/500. United States Environmental Protection Agency Office of Emergency and Remedial Response, Washington, DC, USA.
Ure, A.M. 1995. Methods of analysis for heavy metals in soils. p.58-102. In B.J. Alloway (ed.). Heavy metals in soils. Blackie Academic & Professional, Glasgow, UK.
Vangronsveld, J., and S.D. Cunningham. 1999. Metal-Contaminated Soils. In Situ Inactivationand Phytorestoration. Springer-Verlag, NY, USA
Wang, T.C., J.C. Weissman, G. Ramesh, R. Varadarajan, and Benemann. 1995. Bioremoval of toxic elements with aquatic plants and algae. p65. In R.E. Hinchee, D.B. Anderson and R.E. Hoeppel (eds.). Bioremediation of recalcitrant organics. Battelle Press, Columbus, OH, USA.
Waring S.A., and J.M. Bremner. 1964. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature (London) 2001:951-952.
Wasay, S.A., S.F. Barrington, and S. Tokunaga. 1998. Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents. Environ. Technol. 19:369-380.
Wenzel, W.W., Unterburnner R., Sommer P., and Sacco P. 2003.Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil 249:83-96.
Wilson, M.W., and R.G. Edyvean. 1995. Biosorption for the removal of heavy metals from industrial wastewaters. p 47. In A. Bousher, and M. Chandra (eds.). Biodeterioration and Biodegradation 9. Proceedings of the 9th International Biodeterioration and Biodegradation Symposium, Sept. 1993, Leeds, UK.
Wu, L.H., Y.M. Luo, X.R. Xing, P. Christie. 2004. EDTA-enhanced phytoremediation of heavy metal contaminated soil with India mustard and associated potential leaching risk. Agric. Ecosyst. Environ. 102:307-318.
Zyrin, W.G.., A.I. Obukhov, and G.V. Motuzova. 1974. Forms of micronutrients in the soils of the USSR and methods of their incestigation. Trans. 10th Int. Congr. Soil Sci. Ⅱ:350-357.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36730-
dc.description.abstract傳統的清除技術一般花費極大,而且通常會對污染區的土壤性質造成傷害,因此最近幾年以植物為主的土壤復育技術(植生復育)逐漸受到重視。其中植生萃取為利用植物對於重金屬的高累積能力,移除土壤中的重金屬,可免於傳統方法的大範圍開挖、昂貴處理費和表土大量損失。植生萃取的成功,與適當的植物產量和植物地上部的重金屬累積能力有關,此處適當的植物是指具有大生質量,可以累積高濃度重金屬。目前世界上使用最多的高累積性植物多為十字花科植物。此類植物除了可忍耐與累積高濃度的重金屬,並且還有極高的生質量。本研究所使用的十字花科植物為印度芥菜。但世界上印度芥菜的品種繁多,各品種之間的吸收能力與生長情形並不清楚。因此本研究目的為:比較三種不同地區(分別為印度、阿富汗、巴基斯坦)的印度芥菜對於銅、鋅、鎘、鉛污染土壤的生長反應與累積能力。
本研究試驗地點在台灣大學人工氣候室溫室進行,控制印度芥菜生長的溫度與溼度。種植期間從2004年11月到2005年4月。污染土壤經孵育後重金屬濃度分別為銅200、400 mg kg-1,鋅200、400 mg kg-1,鎘25、50 mg kg-1,鉛500、1000 mg kg-1。將三種不同地區(分別為印度、阿富汗、巴基斯坦)的印度芥菜種植於人為污染土壤中。利用重量法及添加去離子水控制盆栽水分含量為WHC的60%,於生長的第0、7、14、21、28、35天收集土壤溶液。生長35天後收穫植體,利用H2SO4/H2O2法將植體分解,以感應耦合電漿光學發射光譜儀(ICP/AES)分析植體中銅、鋅、鎘、鉛濃度。土壤於盆栽試驗結束後採集,並分別以0.05M EDTA (pH 7.0)、0.005M DTPA (pH 5.3)及王水法加以萃取分析,利用原子吸收光譜儀(AAS)分析萃取液中重金屬銅、鋅、鎘、鉛濃度。
研究結果顯示,三個不同地區印度芥菜對污染土壤中銅與鋅的忍受濃度分別低於200 mg kg-1與100 mg kg-1。對於土壤中鉛的忍受性,皆可生長於1000 mg kg-1鉛污染土壤,植體中鉛濃度最高為200 mg kg-1,並非鉛的超級累積植物。土壤中鎘的忍耐濃度可達25 mg kg-1,植體中鎘的濃度可以達到200 mg kg-1,為鎘的超級累積植物。印度與巴基斯坦品種之生質量明顯高於阿富汗品種(p<0.05)。植體中的鎘濃度比較,三個地區的印度芥菜並沒有明顯不同。植體中鉛濃度,以阿富汗品種明顯高於印度與巴基斯坦 (p<0.05)。添加EDTA後七天收穫植體,印度芥菜鎘含量由200 mg kg-1增加到330 mg kg-1,對鎘的總移除量由97μg 盆-1增加到157μg 盆-1。添加EDTA對印度芥菜植體中鉛濃度有顯著影響,三個不同地區印度芥菜中鉛的濃度由200 mg kg-1增加為700 mg kg-1,土壤鉛的總移除量由38μg 盆-1增加為250μg 盆-1。整體而言,三種印度芥菜對受重金屬污染土壤之植生萃取能力並沒有明顯的差別。而添加EDTA可顯著增加印度芥菜對於土壤重金屬的移除能力。
zh_TW
dc.description.abstractConventional cleanup technology is generally too costly, and often harmful to desirable soil properties (i.e., texture, organic matter) for the restoration of contaminated sites. More recently, increasing attention has been given to the development of a plant-based technology (phytoremediation) to remediate heavy metal contaminated soils without extensive excavation, disposal costs, and loss of topsoil associated with traditional remediation practices.The success of a phytoremediation process is dependent on adequate plant yield and high metal concentrations in plant shoots. The largest numbers of hyperaccumulating species in the world belong to Brassicaceae. The optimum plant for phytoextraction would be able to both tolerate and accumulate high levels of heavy metals and also grow with a high biomass yield. But there are many different species of Indian mustard in the world, and the growth and uptake of those Indian mustard are not clear. Therefore, the object of this study is to compare the growth and heavy metal accumulation of three Indian mustard (Brassica juncea) grown in soils contaminated by Copper, Zinc, Cadmium and Lead.
The study site was located at the green house of National Taiwan University. The investigation was conducted from July 2004 to April 2005. Four salt solution were added to the air-dried soil to control the total concentration of four metals at 200, 400 mg Cu kg-1, 100, 200 mg Zn kg-1, 25, 50 mg Cd -1kg, 500, 1000 mg Pb kg-1. Three kinds of Indian mustard (Brassica juncea) grown in soils contaminated
by zinc, cadmium, lead or coppe. The soil moisture content was maintained at 60% of the water holding capacity, by weighing and adding deionized water. Soil solution were collected directly by RSMS after seeding 0 , 7, 14, 21, 28, 35 day. Test plants were harvested after seeding 35 days, then harvested plant were digested by the H2SO4/H2O2 digestion method. The concentration of Cu, Zn , Cd, and Pb in soil solution and plant digested solution were determinated by inductively coupled plasma optical emission spectrometry (ICP-OES)(Perkin-Elmer 2000 DV). The total and available concentration of Cu, Zn , Cd, and Pb in soil were digested by aqua regia and EDTA, DTPA extractable methods , then determinated by atomic absorption spectrometry (Hitachi 180-30 type).
The results indicated that the soil limiting concentrations of Cu and Zn of the three different species of Indian mustard were lower than 200 and 100 mg kg-1. The soil limiting concentration of Pb of the three different species of Indian mustard was 1000 mg kg-1, and the maximum Pb accumulation of the three Indian mustards was 200 mg kg-1, which was much lower than the accumulation of the Pb hyperaccumulator . The soil limiting concentration of Cd of the three different species of Indian mustard was 25 mg kg-1, and the maximum Cd accumulation of the three Indian mustards was 200 mg kg-1. It reaches the standard level of the Cd hyperaccumulator .The biomass of India and Pakistan Indian mustard were significantly higher than Afghanistan specie (p<0.05). There were no significant different of Cd accumulation between the three Indian mustard species. The Pb accumulation of the three Indian mustard species, the species of Afghanistan of Indian mustard was significantly higher than the species of Indian and Pakistan (p<0.05). The total Cd removal , the species of India and Pakistan were significantly higher than that of Afghanistan species (p<0.05). There were no significant different between the Pb removal of the three Indian mustard species. Harvestd at 7th day after applying EDTA, the Cd concentration of Indian mustard were increased form 200 to 330 mg kg-1, and the total removal of Cd were increased form 97 to 157 μg pot-1. Harvestd at 7th day after applying EDTA, the Pb concentration of Indian mustard were increased form 80 to 700 mg kg-1, and the total removal of Cd were increased form 38 to 250 μg pot-1. In conclusion, the ability of phytoremediation of the three species of Indian mustard are not different, and adding EDTA solution can significantly increase the uptake of heavy metal in contaminated soil.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:13:09Z (GMT). No. of bitstreams: 1
ntu-94-R92623011-1.pdf: 1548771 bytes, checksum: e050a6255abc37e19abbc30eeb22760f (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目錄
頁次
中文摘要………………………………………………………………………Ⅰ
英文摘要………………………………………………………………………Ⅲ
目錄……………………………………………………………………………Ⅵ
表目錄…………………………………………………………………………Ⅷ
圖目錄…………………………………………………………………………Ⅸ
第一章、前言
一、植生復育技術……………………………………………………………1
二、研究目的…………………………………………………………………2
第二章 前人研究
第一節、土壤污染與土壤整治技術…………………………………………3
一、土壤中重金屬………………………………………………………3
二、重金屬污染區整治的未來發展………………………………3
三、土壤整治技術………………………………………………………4
第二節、植生復育技術…………………………………………………………7
一、金屬的植生復育……………………………………………………7
二、植生復育的方法………………………………………………………7
三、植生復育的優點………………………………………………………8
四、植生復育的限制………………………………………………………9
第三節、植生萃取物種………………………………………………………12
一、無機元素的生理需要………………………………………………12
二、植物忍耐與累積金屬的機制………………………………………12
三、金屬生物有效性的影響因子………………………………………13
四、植物累積重金屬的特性………………………………………………13
五、提升植生復育效果……………………………………………………14
第三章、材料與方法
第一節、土壤基本性質分析……………………………………………………16
第二節、銅鋅鎘鉛污染土壤對三種印度芥菜的影響…………………………22
一、人工配置鎘、鉛、銅、鋅污染土壤…………………………………22
二、盆栽試驗………………………………………………………………23
第三節、施用EDTA對三種印度芥菜吸收重金屬的影響……………………25
第四章、結果與討論
第一節、供試土壤的基本理化性質……………………………………………26
第二節、三種印度芥菜於銅、鋅污染土壤的生長反應與累積能力…………28
第三節、三種印度芥菜於鎘、鉛污染土壤的生長反應與累積能力……………35
一、印度芥菜於鎘、鉛污染土壤的生長反應……………………………36
二、不同濃度鎘、鉛污染土壤溶液重金屬濃度
隨著時間的變化…………………………………………………………42
三、不同濃度鎘、鉛污染土壤重金屬可
萃取濃度間的關係………………………………………………………46
四、不同濃度鎘、鉛污染土壤中重金屬與印度芥菜
植體中重金屬濃度的關係………………………………………………50
五、三品種印度芥菜於不同處理的生長比較………………………………58
六、施用EDTA對三種印度芥菜攝取鎘、鉛的影響………………………68
第五章、結論…………………………………………………………………85
第六章、參考文獻……………………………………………………………86
附錄…………………………………………………………………………A1-A20
dc.language.isozh-TW
dc.subject忍受濃度zh_TW
dc.subject鉛zh_TW
dc.subject銅zh_TW
dc.subject鋅zh_TW
dc.subject鎘zh_TW
dc.subject印度芥菜zh_TW
dc.subject植生復育zh_TW
dc.subject超級累積植物zh_TW
dc.subject植生萃取能力zh_TW
dc.subjectleaden
dc.subjectability of phytoextractionen
dc.subjecthyperaccumulatoren
dc.subjectzincen
dc.subjectcopperen
dc.subjectcadiumen
dc.subjectlimiting concentrationen
dc.subjectphytoremediationen
dc.subjectIndian mustarden
dc.title三種印度芥菜對銅鋅鎘鉛污染土壤的生長反應及重金屬累積能力zh_TW
dc.titleThe Growth and Heavy Metal Accumulation of Three Indian Mustard (Brassica juncea) Grown in Soils Contaminated
by Copper, Zinc, Cadium and Lead
en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王敏昭,鍾仁賜
dc.subject.keyword植生復育,印度芥菜,鎘,鋅,銅,鉛,忍受濃度,超級累積植物,植生萃取能力,zh_TW
dc.subject.keywordphytoremediation,Indian mustard,zinc,copper,cadium,lead,limiting concentration,hyperaccumulator,ability of phytoextraction,en
dc.relation.page133
dc.rights.note有償授權
dc.date.accepted2005-07-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved