Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36725
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張明富
dc.contributor.authorYi-Chen Kuoen
dc.contributor.author郭逸楨zh_TW
dc.date.accessioned2021-06-13T08:12:55Z-
dc.date.available2005-08-02
dc.date.copyright2005-08-02
dc.date.issued2005
dc.date.submitted2005-07-20
dc.identifier.citationAlter, H. J., Purcell, R. H., Shih, J. W., Melpolder, J. C., Houghton, M., Choo, Q. L., and Kuo, G. (1989). Detection of antibody to hepatitis C virus in prospectively followed transfusion recipients with acute and chronic non-A, non-B hepatitis. N. Engl. J. Med. 321: 1494-500.
Asabe, S. I., Tanji, Y., Satoh, S., Kaneko, T., Kimura, K., and Shimotohno, K. (1997). The N-terminal region of hepatitis C virus-encoded NS5A is important for NS4A-dependent phosphorylation. J. Virol. 71: 790-6.
Bartenschlager, R. (2002). Hepatitis C virus replicons: potential role for drug development. Nat. Rev. Drug Discov. 1: 911-6.
Bartenschlager, R., Ahlborn-Laake, L., Mous, J., and Jacobsen, H. (1993). Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. J. Virol. 67: 3835-44.
Bartenschlager, R., Ahlborn-Laake, L., Mous, J., and Jacobsen, H. (1994). Kinetic and structural analysis of hepatitis C virus polyprotein processing. J. Virol. 68: 5045-55.
Behrens, S. E., Tomei, L., and De Francesco, R. (1996). Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J. 15: 12-22.
Blight, K. J., Kolykhalov, A. A., and Rice, C. M. (2000). Efficient initiation of HCV RNA replication in cell culture. Science 290: 1972-4.
Bretner, M. (2005). Existing and future therapeutic options for hepatitis C virus infection. Acta Biochimica Polonica 52: 57-70.
Bukh, J., Miller, R. H., Kew, M. C., and Purcell, R. H. (1993). Hepatitis C virus RNA in Southern Africa blacks with hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA 90: 1848-51.

Bukh, J., Miller, R. H., Purcell, R. H. (1995). Genetic heterogeneity of the hepatitis C virus. Princess Takamatsu. Symp. 25: 75-91.
Bukh, J., Purcell, R. H., Miller, R. H. (1994). Sequence analysis of the core gene of 14 hepatitis C virus genotypes. Proc. Natl. Acad. Sci. 91: 8239-43.
Carrère-Kremer, S., Montpellier-Pala, C., Cocquerel, L., Wychowski, C., Penin, F., and Dubuisson, J. (2002). Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J. Virol. 76: 3720-30.
Chang, J., Yang, S. H., Cho, Y. G., Hwang, S. B., Hahn, Y. S., and Sung, Y. C. (1998). Hepatitis C virus core from two different genotypes has an oncogenic potential but is not sufficient for transforming primary rat embryo fibroblasts in cooperation with the H-ras oncogene. J. Virol. 72: 3060-5.
Chang, S. C., Cheng, J. C., Kou, Y. H., Kao, C. H., Chiu, C. H., Wu, H. Y., Chang, M. F. (2000). Roles of the AX(4)GKS and arginine-rich motifs of hepatitis C virus RNA helicase in ATP- and viral RNA-binding activity. J. Virol. 74: 9732-7.
Chang, S. C., Yen, J. H., Kang, H. Y., Jang, M. H., and Chang, M. F. (1994). Nuclear localization signals in the core protein of hepatitis C virus. Biochem. Biophys. Res. Commun. 205: 1284-90.
Cheng, J. C., Chang, M. F., and Chang, S. C. (1999). Specific interaction between the hepatitis C virus NS5B RNA polymerase and the 3’ end of the viral RNA. J. Virol. 73: 7044-9.
Choo, Q. L., Kuo, G., Weiner, A. J., Overby, L. R., Bradley, D. W., and Houghton, M. (1989). Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244:359-62.
Choo, Q. L., Weiner, A. J., Overby, L. R., Kuo, G., Houghton, M., and Bradley, D. W. (1990). Hepatitis C virus: the major causative agent of viral non-A, non-B hepatitis. Br. Med. Bull. 46:423-41.

Choo, Q. L., Richman, K. H., Han, J. H., Berger, K., Lee, C., Dong, C., Gallegos, C., Coit, D., Medina-Selby, A., Barr, P. J., Weiner, A. J., Bradley, D. W., Kuo, G., and Houghton, M. (1991). Genetic organization and diversity of the hepatitis C virus. Proc. Natl. Acad. Sci. USA 88: 2451-5.
Chung, R. T., and Kaplan, L. M. (1999). Heterogeneous nuclear ribonucleoprotein I (hnRNP-I/PTB) selectively binds the conserved 3' terminus of hepatitis C viral RNA. Biochem. Biophys. Res. Commun. 254: 351-62.
Deleersnyder, V., Pillez, A., Wychowski, C., Blight, K., Xu, J., Hahn, Y. S., Rice, C. M., and Dubuisson, J. (1997). Formation of native hepatitis C virus glycolprotein complexes. J. Virol. 7: 697-704.
Dubuisson, J., Penin, F., and Moradpour, D. (2002). Interaction of hepatitis C virus proteins with host cell membranes and lipids. Trends Cell Biol. 12: 517-23.
Egger, D., Wolk, B., Gosert, R., Bianchi, L., Blum, H. E., Moradpour, D., and Bienz, K. (2002). Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J. Virol. 76: 5974-84.
Einav, S., Elazar, M., Danieli, T., and Glenn, J. S. (2004). A nucleotide binding motif in hepatitis C virus (HCV) NS4B mediates HCV RNA replication. J. Virol. 78: 11288-95.
Elazar, M., Liu, P., Rice, C. M., and Glenn, J. S. (2004). An N-terminal amphipathic helix in hepatitis C virus (HCV) NS4B mediates membrane association, correct localization of replication complex proteins, and HCV RNA replication. J. Virol. 78: 11393-400.
El-Hage, N., and Luo, G. (2003). Replication of hepatitis C virus RNA occurs in a membrane-bound replication complex containing nonstructural viral proteins and RNA. J. Gen. Virol. 84: 2761-9.
Failla, C., Tomei, L., and De Francesco, R. (1994). Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. J. Virol. 68: 3753-60.
Failla, C., Tomei, L., and De Francesco, R. (1995). An amino-terminal domain of the hepatitis C virus NS3 protease is essential for interaction with NS4A. J. Virol. 69:1769-77.
Farci, P., Alter, H. J., Govindarajan, S., Wong, D. C., Engle, R., Lesniewski, R. R., Mushahwar, I. K., Desai, S. M., Miller, R. H., and Ogata, N. (1992). Lack of protective immunity against reinfection with hepatitis C virus. Science 258:135-40.
Florese, R. H., Nagano-Fujii, M., Iwanaga, Y., Hidajat, R., and Hotta, H. (2002). Inhibition of protein synthesis by the nonstructural proteins NS4A and NS4B of hepatitis C virus. Virus Res. 90:119-31.
Frese, M., Pietschmann, T., Moradpour, D., Haller, O., and Bartenschlager, R. (2001). Interferon-α inhibits hepatitis C virus subgenomic RNA replication by an MxA-independent pathway. J. Gen. Virol. 82: 723-33.
Friebe, P., and Bartenschlager, R. (2002). Genetic analysis of sequences in the 3’ nontranslated region of hepatitis C virus that are important for RNA replication. J. Virol. 76: 5326-38.
Fukushi, S., Kurihara, C., Ishiyama, N., Hoshino, F. B., Oya, A., and Katayama, K. (1997). The sequence element of the internal ribosome entry site and a 25-kilodalton cellular protein contribute to efficient internal initiation of translation of hepatitis C virus RNA. J. Virol. 71:1662-6.
Gale, M. J., Korth, M. J., Tang, N. M., Tan, S. L., Hopkins, D. A., Dever, T. E., Polyak, S. J., Gretch, D. R., and Katze, M. G. (1997). Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology 230: 217-27.
Gale, M. J., Jr, Blakely, S. M., Kwieciszewski, B., Tan, S. L., Dossett, M., Tang, N. M., Korth, M. J., Polyak, S. J., Gretch, D. R., and Katze, M. G. (1998). Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanism of kinase regulation. Mol. Cell. Biol. 18: 5208-18.

Gao, L., Aizaki, H., He, J. W., and Lai, M. M. (2004). Interactions between viral nonstructural proteins and host protein hVAP-33 mediate the formation of hepatitis C virus RNA replication complex on lipid raft. J. Virol. 78: 3480-8.
Glue, P., Rouzier-Panis, R., Raffanel, C., Sabo, R., Gupta, S. K., and Salfi, M. (2000). A dose-ranging study of pegylated interferon alfa-2b and ribavirin in chronic hepatitis C. The hepatitis C intervention therapy group. Hepatology 32: 647-53.
Gontarek, R. R., Gutshall, L. L., Herold, K. M., Tsai, J., Sathe, G. M., Mao, J., Prescott, C., and Del Vecchio, A. M. (1999). hnRNP C and polypyrimidine tract-binding protein specifically interact with the pyrimidine-rich region within the 3'NTR of the HCV RNA genome. Nucleic Acids Res. 27:1457-63.
Gosert, R., Egger, D., Lohmann, V., Bartenschlager, R., Blum, H. E., Bienz, K., and Moradpour, D. (2003). Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring subgenomic replicons. J. Virol. 77: 5487-92.
Grakoui, A., McCourt, D. W., Wychowski, C., Feinstone, S. M., and Rice, C. M. (1993a). A second hepatitis C virus-encoded proteinase. Proc. Natl. Acad. Sci. USA 90: 10583-7.
Grakoui, A., McCourt, D. W., Wychowski, C., Feinstone, S. M., and Rice, C. M. (1993b). Characterization of the hepatitis C virus-encoded serine proteinase: determination of proteinase-dependent polyprotein cleavage sites. J. Virol. 67: 2832-43.
Gremion, C., and Cerny, A. (2005). Hepatitis C virus and the immune system: a concise review. Rev. Med. Virol. 15:235-68.
Griffin, S. D., Beales, L. P., Clarke, D. S., Worsfold, O., Evans, S. D., Jaeger, J., Harris, M. P., and Rowlands, D. J. (2003). The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett. 535:34-8.
Guo, J. T., Bichko, V. V., and Seeger, C. (2001). Effect of alpha interferon on the hepatitis C virus replicon. J. Virol. 75: 8516-8523.
Han, J. H., Shyamala, V., Richman, K. H., Brauer, M. J., Irvine, B., Urdea, M. S., Tekamp-Olson, P., Kuo, G., Choo, Q. L., and Houghton, M. (1991). Characterization of the terminal regions of hepatitis C viral RNA: identification of conserved sequences in the 5' untranslated region and poly(A) tails at the 3' end. Proc. Natl. Acad. Sci. 88:1711-5.
Hayashi, J., Aoki, H., Arakawa, Y., and Hino, O. (1999). Hepatitis C virus and hepatocarcinogenesis. Intervirology 42: 205-210.
Heller, T., Saito, S., Auerbach, J., Williams, T., Moreen, T. R., Jazwinski, A., Cruz, B., Jeurkar, N., Sapp, R., Luo, G., and Liang, T. J. (2005). An in vitro model of hepatitis C virion production. Proc. Natl. Acad. Sci. U S A. 102:2579-83.
Hijikata, M., Mizushima, H., Akagi, T., Mori, S., Kakiuchi, N., Kato, N., Tanaka, T., Kimura, K., and Shimotohno, K. (1993). Two distinct proteinase activities required for the processing of a putative non-structural precursor protein of hepatitis C virus. J. Virol. 67: 4665-75.
Hu, K. H., Vierling, J. M., and Redeker, A. G. (2001). Viral, host, and interferon-related factors modulating the effect of interferon therapy for hepatitis C virus infection. J. Viral Hepat. 8: 1-18.
Hügle, T., Fehrmann, F., Bieck, E., Kohara, M., Kräusslich, H. G., Rice, C. M., Blum, H. E., and Moradpour, D. (2001). The hepatitis C virus nonstructural protein 4B is an integral endoplasmic reticulum membrane protein. Virology 284: 70-81.
Ikeda, M., Yi, M., Li, K., and Lemon, S. M. (2002). Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J. Virol. 76: 2997-3006.
Ito, T., Tahara, S. M., and Lai, M. M. (1998). The 3'-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. J. Virol. 72(11): 8789-96
Ito, T., and Lai, M. M. (1999). An internal polypyrimidine-tract-binding protein-binding site in the hepatitis C virus RNA attenuates translation, which is relieved by the 3'-untranslated sequence. Virology 254: 288-96.
Kaito, M., Watanabe, S., Tsukiyama-Kohara, K., Yamaguchi, K., Kobayashi, Y., Konishi, M., Yokoi, M., Ishida, S., Suzuki, S., and Kohara, M. (1994). Hepatitis C virus particle detected by immunoelectron microscopic study. J. Gen. Virol. 75: 1755-60.
Kaneko, T., Tanji, Y., Satoh, S., Hijikata, M., Asabe, S., Kimura, K., and Shimotohno, K. (1994). Production of two phosphoproteins from the NS5A region of hepatitis C viral genome. Biochem. Biophys. Res. Commun. 205: 320-6.
Kato, N., Hijikata, M., Ootsuyama, Y., Nakagawa, M., Ohkoshi, S., Sugimura,T., and Shimotohno, K. (1990). Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc. Natl. Acad. Sci. USA 87: 9524-8.
Kato, J., Kato, N., Yoshida, H., Ono-Nita, S. K., Shiratori, Y., and Omata, M. (2002). Hepatitis C virus NS4A and NS4B proteins suppress translation in vivo. J. Med. Virol. 66: 187-99.
Kato, N., Yoshida, H., Ono-Nita, S. K., Kato, J., Goto, T., Otsuka, M., Lan, K. H., Matsushima, K., Shiratori, Y., and Omata, M. (2000). Activation of intracellular signaling by hepatitis B and C viruses: C-viral core is the most potent signal inducer. Hepatology 32: 405-12.
Kjeldgaard, M., Nyborg, J., and Clark, B. F. (1996). The GTP binding motif: variations on a theme. FASEB J. 10:1347-68.
Koch, J. O., and Bartenschlager, R. (1999). Modulation of hepatitis C virus NS5A hyperphosphorylation by nonstructural proteins NS3, NS4A, and NS4B. J. Virol. 73: 7138-46.
Kolykhalov, A. A., Feinstone, S. M., and Rice, C. M. (1996). Identification of a highly conserved sequence element at the 3’ terminus of hepatitis C virus genome RNA. J. Virol. 70: 3363-71.
Kolykhalov, A. A., Mihalik, K., Feinstone, S. M., and Rice, C. M. (2000). Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3’ nontranslated-region are essential for virus replication in vivo. J. Virol. 74: 2046-51.
Krieger, N., Lohmann, V., and Bartenschlager, R. (2001). Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J. Virol. 75: 4614-24.
Kruger, M., Beger, C., Li, Q. X., Welch, P. J., Tritz, R., Leavitt, M., Barber, J. R., and Wong-Staal, F. (2000). Identification of eIF2Bgamma and eIF2gamma as cofactors of hepatitis C virus internal ribosome entry site-mediated translation using a functional genomics approach. Proc. Natl. Acad. Sci. 97: 8566-71
Kuo, G., Choo, Q. L., Alter, H. J., Gitnick, G. L., Redeker, A. G., Purcell, R. H., Miyamura, T., Dienstag, J. L., Alter, M. J., Stevens, C. E., Tegtmeier, G. E., Bonino, F., Colombo, M., Lee, W. S., Kuo, C., Berger, K., Shuster, J. R., Overby, L. R., Bradler, D. W. and Houghton, M. (1989). An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244: 362-4.
Lanford, R. E., and Bigger, C. (2002). Advances in model systems for hepatitis C virus research. Virology 293(1):1-9.
Le, S. Y., Liu, W. M., and Maizel, J. V. Jr. (1998). Phylogenetic evidence for the improved RNA higher-order structure in internal ribosome entry sequences of HCV and pestiviruses. Virus Genes 17:279-95.
Lerat, H., Honda, M., Beard, M. R., Loesch, K., Sun, J., Yang, Y., Okuda, M., Gosert, R., Xiao, S. Y., Weinman, S. A., and Lemon, S. M. (2002). Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology 122: 352-65.
Lin, C., Wu, J. W., Hsiao, K., and Su, M. S. S. (1997). The hepatitis C virus NS4A protein: interactions with the NS4B and NS5A proteins. J. Virol. 71: 6465-71.
Lohmann, V., Körner, F., Dobierzewska, A., and Bartenschlager, R. (2001). Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J. Virol. 75: 1437-49.
Lohmann, V., Hoffmann, S., Herian, U., Penin, F., and Bartenschlager, R. (2003). Viral and cellular determinants of hepatitis C virus RNA replication in cell culture. J. Virol. 77:3007-19.
Lohmann, V., Körner, F., Herian, U., and Bartenschlager, R. (1997). Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. J. Virol. 71: 8416-28.
Lohmann, V., Korner, F., Koch, J., Herian, U., Theilmann, L., and Bartenschlager, R. (1999). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110-3.
Lo, S. Y., Selby, M. J., and Ou, J. H. (1996). Interaction between hepatitis C virus core protein and E1 envelope protein. J. Virol. 70: 5177-82.
Lukavsky, P. J., Otto, G. A., Lancaster, A. M., Sarnow, P., and Puglisi, J. D. (2000). Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function. Nat. Struct. Biol.12: 1105-10.
Lundin, M., Monne, M., Widell, A., Von Heijne, G., and Persson, M. A. (2003). Topology of the membrane-associated hepatitis C virus protein NS4B. J. Virol. 77:5428-38.
McLauchlan, J. (2000). Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J. Viral Hepat. 7: 2-14.
Mercer, D. F., Schiller, D. E., Elliott, J. F., Douglas, D. N., Hao, C., Rinfret, A., Addison, W. R., Fischer, K. P., Churchill, T. A., Lakey, J. R., Tyrrell, D. L., and Kneteman, N. M. (2001). Hepatitis C virus replication in mice with chimeric human livers. Nat. Med. 7:927-33.

Meunier, J. C., Fournillier, A., Choukhi, A., Cahour, A., Cocquerel, L., Dubuisson, J., and Wychowski, C. (1999). Analysis of the glycosylation sites of hepatitis C virus (HCV) glycoprotein E1 and the influence of E1 glycans on the formation of the HCV glycoprotein complex. J. Gen. Virol. 80: 887-96.
Moller, W., and Amons, R. (1985). Phosphate-binding sequences in nucleotide-binding proteins. FEBS Lett. 186:1-7.
Moradpour, D., and Blum, H. E. (2004). A primer on the molecular virology of hepatitis C. Liver Int. 24: 519-25
Moradpour, D., Gosert, R., Egger, D., Penin, F., Blum, H. E., and Bienz, K. (2003). Membrane association of hepatitis C virus nonstructural proteins and identification of the membrane alteration that harbors the viral replication complex. Antiviral Res. 60:103-9.
Moriya, K., Yotsuyanagi, H., Shintani, Y., Fujie, H., Ishibashi, K., Matsuura, Y., Miyamura, T., and Koike, K. (1997). Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J. Gen. Virol. 78: 1527-31.
Moriya, K., Fujie, H., Shintani, Y., Yotsuyanagi, H., Tsutsumi, T., Ishibashi, K., Nedderman, P., Clementi, A., and De Francesco,R. (1999). Hyperphosphorylation of the hepatitis C virus NS5A protein requires an active NS3 protease, NS4A, NS4B, and NS5A encoded on the same polyprotein. J. Virol. 73: 9984-91.
Nasoff, M. S., Zebedee, S. L., Inchauspe, G., and Prince, A. M. (1991). Identification of an immunodominant epitope within the capsid protein of hepatitis C virus. Proc. Natl. Acad. Sci. 88: 5462-6.
Neddermann, P., Tomei, L., Steinkuhler, C., Gallinari, P., Tramontano, A., and De Francesco, R. (1997). The nonstructural proteins of the hepatitis C virus: structure and functions. Biol. Chem. 378:469-76.
Nishikawa, F., Kakiuchi, N., Funaji, K., Fukuda, K., Sekiya, S., and Nishikawa, S. (2003). Inhibition of HCV NS3 protease by RNA aptamers in cells. Nucleic Acids Res. 31:1935-43.
Op De Beeck, A., Cocquerel, L., and Dubuisson, J. (2000). Biogenesis of hepatitis C virus envelope glycoproteins. J. Gen. Virol. 82: 2589-95.
Park, J. S., Yang, J. M., and Min, M. K. (2000). Hepatitis C virus nonstructural protein NS4B transforms NIH3T3 cells in cooperation with the Ha-ras oncogene. Biochem. Biophys. Res. Commun. 267: 581-7.
Pavlovic, D., Neville, D. C., Argaud, O., Blumberg, B., Dwek, R. A., Fischer, W. B., and Zitzmann, N. (2003). The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc. Natl. Acad. Sci. 100: 6104-8.
Pawlotsky, J. M. (1998). Hepatitis C virus infection: viral/host interactions. J.Viral. Hepat. Suppl 1: 3-8.
Penin, F., Dubuisson, J., Rey, F. A., Moradpour, D., and Pawlotsky, J. M. (2004). Structural biology of hepatitis C virus. Hepatology 39: 5-19.
Pflugheber, J., Fredericksen, B., Sumpter Jr., R., Wang, C., Ware, F., Sodora, D. L., and Gale Jr., M. (2002). Regulation of PKR and IRF-1 during hepatitis C virus RNA replication. Proc. Natl. Acad. Sci. USA 99: 4650-5.
Piccininni, S., Varaklioti, A., Nardelli, M., Dave, B., Raney, K. D., and McCarthy, J. E. (2002). Modulation of the hepatitis C virus RNA-dependent RNA polymerase activity by the non-structural (NS) 3 helicase and the NS4B membrane protein. J. Biol. Chem. 277: 45670-9.
Pietschmann, T., Lohmann, V., Rutter, G., Kurpanek, K., and Bartenschlager, R. (2001). Characterization of cell lines carrying self- replicating hepatitis C virus RNAs. J. Virol. 75: 1252-64.
Pietschmann, T., Lohmann, V., Kaul, A., Krieger, N., Rinck, G., Rutter, G., Strand, D., and Bartenschlager, R. (2002). Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J. Virol. 76: 4008-21.
Ray, R. B., Ghosh, A. K., Meyer, K., and Ray, R. (1999). Functional analysis of a transrepressor domain in the hepatitis C virus core protein. Virus Res. 59: 211-7.
Ray, R. B., Lagging, L. M., Meyer, K., Steele, R., and Ray, R. (1995). Transcriptional regulation of cellular and viral promoters by the hepatitis C virus core protein. Virus Res. 37: 209-20.
Reddy, K. R., Wright, T. L., Pockros, P. J., Shiffman, M., Everson, G., Reindollar, R., Fried, M. W. (2001). Efficacy and safety of pegylated (40-kd) interferon alpha-2a compared with interferon alpha-2a in noncirrhotic patients with chronic hepatitis C. Hepatology 33: 433-8.
Rosenberg, S. (2001). Recent advances in the molecular biology of hepatitis C virus. J. Mol. Biol. 313: 451-64.
Saito, I., Miyamura, T., Ohbayashi, A., Harada, H., Katayama, T., Kikuchi, S., Watanabe, Y., Koi, S., Onji, M., Ohta, Y., Choo, Q. L., Houghton, M., and Kuo, G. (1990). Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA 87: 6547-9.
Santolini, E., Migliacio, G., and La Monica, N. (1994). Biosynthesis and bio- chemical properties of the hepatitis C virus core protein. J. Virol. 68: 3631-41.
Santolini, E., Pacini, L., Fipaldini, C., Migliaccio, G., and Monica, N. (1995). The NS2 protein of hepatitis C virus is a transmembrane polypeptide. J. Virol. 69: 7461-71
Saraste, M., Sibbald, P. R., and Wittinghofer, A. (1990). The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15:430-4.
Shi, S. T., Lee, K. J., Aizaki, H., Hwang, S. B., and Lai, M. M. (2003). Hepatitis C virus RNA replication occurs on a detergent-resistant membrane that cofractionates with caveolin-2. J. Virol. 77: 4160-8.
Simmonds, P., Smith, D. B., McOmish, F., Yap, P. L., Kolberg, J., Urdea, M. S., and Holmes, E. C. (1994). Identification of genotypes of hepatitis C virus by sequence comparisons in the core, E1 and NS-5 regions. J. Gen. Virol. 75:1053-61.

Spahn, C. M., Kieft J. S., Grassucci R. A., Penczek P. A., Zhou, K., Doudna, J. A., and Frank, J. (2001). Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Science 291: 1959-62.
Tai, C. L., Chi, W. K., Chen, D. S., and Hwang, L. H. (1996). The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). J. Virol. 70: 8477-84.
Takamizawa, A., Mori, C., Fuke, I., Manabe, S., Murakami, S., Fujita, J., Onishi, E., Andoh, T., Yoshida, I., and Okayama, H. (1991). Structure and organization of the hepatitis C virus genome isolated from human carriers. J. Virol. 65: 1105-13.
Tan, S. L., and Katze, M. G. (2001). How hepatitis C virus counteracts the interferon response: the jury is still out on NS5A. Virology 284: 1-12.
Tan, S. L., Pause, A., Shi, Y., and Sonenberg, N. (2002). Hepatitis C therapeutics: current status and emerging strategies. Nat. Rev. Drug Discov. 1:867-81.
Tanaka, T., Kato, N., Cho, M. J., Sugiyama, K., and Shimotohno, K. (1996). Structure of the 3’ terminus of the hepatitis C virus genome. J. Virol. 70: 3307-12
Tanji, Y., Kaneko, T., Satoh, S., and Shimotohno, K. (1995). Phosphorylation of hepatitis C virus-encoded nonstructural protein NS5A. J. Virol. 69: 3980-6.
Tardif, K. D., Mori, K., and Siddiqui, A. (2002). Hepatitis C virus subgenomic replicons induce endoplasmic reticulum stress actvating an intracellular signaling pathway. J. Virol. 76: 7453-9.
Taylor, D. R., Shi, S. T., Romano, P. R., Barber, G. N., and Lai, M. C. (1999). Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science 285: 107-10.
Thomson, B. J., and Finch, R. G. (2005) Hepatitis C virus infection. Clin. Microbiol. Infect. 11: 86-94.
Tong, M. J., Hwang, S. J., Lefkowitz, M., Lee, S. D., Co, R. L., Conrad, A., Schmid, P., and Lo, K. J. (1994). Correlation of serum HCV RNA and alanine aminotransferase levels in chronic hepatitis C patients during treatment with ribavirin. J. Gastroenterol Hepatol. 9:587-91.
Tong, W. Y., Nagano-Fujii, M., Hidajat, R., Deng, L., Takigawa, Y., and Hotta, H. (2002). Physical interaction between hepatitis C virus NS4B protein and CREB-RP/ATF6β. Biochem. Biophys. Res. Commun. 299: 366-72.
Tsukiyama-Kohara, K., Iizuka, N., Kohara, M., and Nomoto, A. (1992). Internal ribosome entry site within hepatitis C virus RNA. J. Virol. 66: 1476-83.
Varaklioti, A., Vassilaki, N., Georgopoulou, U., and Mavromara, P. (2002). Alternate translation occurs within the core coding region of the hepatitis C viral genome. J. Biol. Chem. 277: 17713-21.
Walewski, J. L., Keller, T. R., Stump, D. D., and Branch, A. D. (2001). Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame. RNA 7: 710-21.
Wang, C., Sarnow, P., and Siddiqui, A. (1993). Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J. Virol. 67: 3338-44.
Wang, Y. S., Youngster, S., Grace, M., Bausch, J., Bordens, R., and Wyss, D. F. (2002). Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv. Drug Deliv. Rev. 54:547-70.
Weiner, A. J., Brauer, M. J., Rosenblatt, J., Richman, K. H., Tung, J., Crawford, K., Bonino, F., Saracco, G., Choo, Q. L., Houghton, M., and Han, J. H. (1991). Variable and hypervariable domains are found in the regions of HCV corresponding to the flavivirus envelope and NS1 proteins and the pestivirus envelope glycoproteins. Virology 180:842-8.
Xie, Z. C., Riezu, J. I., Lasarte, J. J., Guillen, J., Su, J. H., Civeira, M. P., and Prieto, J. (1998). Transmission of hepatitis C virus infection to tree shrews. Virology 244: 513-20.
Xu, Z., Choi, J., Yen, T. S. B., Lu, W., Strohecker, A., Govindarajan, S., Chien, D., Selby, M. J., and Ou, J. (2001). Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. EMBO J. 20: 3840-8.
Yamada, N., Tanihara, K., Takada, A., Yorihuzi, T., Tsutsumi, M., Shimomura, H., Tsuji, T., and Date, T. (1996). Genetic organization and diversity of the 3’ noncoding region of the hepatitis C virus genome. Virology 244: 513-20.
Yasui, K., Wakita, T., Tsukiyama, K. K., Funahashi, S. I., Ichikawa, M., Kajita, T., Moradpour, D., Wands, J. R., and Kohara, M. (1998). The native form and maturation process of hepatitis C virus core protein. J. Virol. 72: 6048-55.
Yen, J. H., Chang, S. C., Hu, C. R., Chu, S. C., Lin, S. S., Hsieh, Y. S., and Chang, M. F. (1995). Cellular proteins specifically bind to the 5'-noncoding region of hepatitis C virus RNA. Virology 208: 723-32.
You, S., Stump, D. D., Branch, A. D., and Rice, C. M. (2004). A cis-acting replication element in the sequence encoding the NS5B RNA-dependent RNA polymerase is required for hepatitis C virus RNA replication. J. Virol. 78: 1352-66.
Zheng, Y., Ye, L. B., Liu, J., Jing, W., Timani, K. A., Yang, X. J., Yang, F., Wang, W., Gao, B., and Wu, Z. H. (2005). Gene expression profiles of HeLa Cells impacted by hepatitis C virus non-structural protein NS4B. J. Biochem. Mol. Biol. 38: 151-60.
Zhong, J., Gastaminza, P., Cheng, G., Kapadia, S., Kato, T., Burton, D. R., Wieland, S. F., Uprichard, S. L., Wakita, T., and Chisari, F. V. (2005). Robust hepatitis C virus infection in vitro. Proc. Natl. Acad. Sci. U S A. 102:9294-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36725-
dc.description.abstractC型肝炎病毒 (HCV) 是造成非A非B型肝炎的主要致病原。C型肝炎病毒是一單股正向的RNA病毒,基因體全長約為9600個核苷酸,可轉譯出一個約3000個胺基酸的多蛋白質前驅物,經由宿主和病毒本身的蛋白質水解酶切割,得到結構性和非結構性蛋白質。C型肝炎病毒的非結構性蛋白質NS4B為一疏水性蛋白質,分子量約為27 kDa,其功能尚未全然明瞭。NS4B具有四個transmembrane domains,會引起細胞內的胞器膜構造產生變化,形成緊密的膜狀網構造,推測C型肝炎病毒NS5B RNA聚合酶會與其他非結構性蛋白質形成複製複合體,座落於此膜狀網構造上。
之前的研究發現,NS4B中間有一個nucleotide binding motif,可以和GTP結合並且可將其水解, NS4B具有的GTPase活性對於C型肝炎病毒複製是重要的。若使A motif (1840-GX1X2X3X4GK-1846) 的保留性序列K1846突變成serine或arginine,會造成NS4B(K1846S) 和 NS4B(K1846R) 與GTP的結合減少,使GTPase活性下降,進而抑制C型肝炎病毒的複製;但是另一適應性突變NS4B(K1846T) 卻會使C型肝炎病毒的複製增加達三十倍。
在本研究中,利用轉染表現的細胞經由免疫螢光染色,證實NS4B和NS4B(K1846T)均分布在細胞質中,而且較集中在細胞核周圍。為了測定NS4B和NS4B(K1846T)的NTPase活性,藉由誘導大腸桿菌大量表現GST-NS4B和GST-NS4B(K1846T),以glutathione Sepharose 4B和PreScission protease將NS4B和NS4B(K1846T) 加以純化,結果顯示NS4B具有GTPase和ATPase活性,而與NS4B比較,K1846T的ATPase活性減少到40%,但是對GTPase活性幾乎沒有影響。以上結果顯示NS4B的nucleotide binding motif中lysine-1846,對於NS4B的NTPase活性並不是絕對必要的。推測適應性突變種NS4B(K1846T)可能藉由其他機制,促進C型肝炎病毒的複製。
zh_TW
dc.description.abstractHepatitis C virus (HCV) is a major cause of liver disease worldwide. HCV contains a positive-stranded RNA genome of 9.6 kilobases encodes a polyprotein of about 3000 amino acid residues. The polyprotein undergoes cellular and viral protease processing to generate structural and nonstructural proteins. Nonstructural protein 4B (NS4B) is a relatively hydrophobic 27 kDa protein of unknown function. NS4B has four transmembrane segments and has the ability to induce a tight structure formation as membranous web. It is proposed that HCV NS5B RNA polymerase forms replication complex with other nonstructural proteins at the membranous web.
NS4B possesses GTPase activity. It contains a nucleotide binding motif (NBM) that mediates binding and hydrolysis of GTP previously demonstrated to be important for HCV replication. Substitutions at the conserved K-1846 with serine or arginine in the A motif (1840-GX1X2X3X4GK-1846) of NBM impaired GTP binding and hydrolysis, and resulted in inhibition of HCV RNA replication. Nevertheless, a cell culture adaptive mutant K1846T in which K-1846 was mutated to threonine enhances HCV RNA replication to 30 fold.
In this study, NS4B and NS4B(K1846T) were detected in the cytoplasm of transfected cells and preferentially localized at the perinuclear region by immunofluorescence staining assay. To examine the NTPase activities of NS4B and NS4B(K1846T), GST-NS4B and GST-NS4B(K1846T) were expressed in E. coli, purified by glutathione Sepharose 4B, and cleaved to NS4B and NS4B(K1846T) by PreScission protease. HCV NS4B protein possesses both GTPase and ATPase activities. K1846T mutation decreased the ATPase activity of NS4B to 40%, but had little effect on GTPase activity. The results indicate that the lysine-1846 in the nucleotide binding motif is not absolutely required for the GTPase activity of NS4B. Different from previous studies, the results suggest that the adaptive mutant K1846T may promote HCV replication by mechanisms other than the GTPase activity of NS4B protein.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:12:55Z (GMT). No. of bitstreams: 1
ntu-94-R92442004-1.pdf: 2891929 bytes, checksum: 1d8c0c2bd4a0951a33d7d79e856d1f59 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要 ………………………………………………… I
英文摘要 ………………………………………………… II
縮寫表 …………………………………………………… III
緒論 ……………………………………………………… 1
材料來源 …………………………………………………14
實驗方法 …………………………………………………20
實驗結果 …………………………………………………36
討論 ………………………………………………………41
圖表 ………………………………………………………45
參考文獻 …………………………………………………65
dc.language.isozh-TW
dc.subjectNS4Bzh_TW
dc.subjectC型肝炎zh_TW
dc.subjectHCVen
dc.subjectNS4Ben
dc.titleC型肝炎病毒非結構性蛋白質4B 之核苷酸水解酶活性zh_TW
dc.titleThe NTPase Activity of Hepatitis C Virus NS4B proteinen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖大修,董馨蓮
dc.subject.keywordC型肝炎,NS4B,zh_TW
dc.subject.keywordHCV,NS4B,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2005-07-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved